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a b s t r a c t

In this article, we consider an m-dimensional stochastic differential equation with
coefficients which depend on the maximum of the solution. First, we prove the absolute
continuity of the law of the solution. Then we prove that the joint law of the maximum
of the ith component of the solution and the i′th component of the solution is absolutely
continuous with respect to the Lebesgue measure in a particular case. The main tool to
prove the absolute continuity of the laws is Malliavin calculus.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries of Malliavin calculus

In this article, we deal with the followingm-dimensional stochastic differential equation (SDE):

X i
t = xi +

d
l=1

 t

0
Ai
l(s, Xs,Ms)dW l

s +

 t

0
Bi(s, Xs,Ms)ds, 1 ≤ i ≤ m, (1)

where W denotes a d-dimensional Brownian motion, Ai
l, B

i
: [0, ∞) × R2m

→ R, 1 ≤ i ≤ m, 1 ≤ l ≤ d are measurable
functions, and Ms = (M1

s , . . . ,M
m
s ) := (maxu≤s X1

u , . . . ,maxu≤s Xm
u ). The purpose of this article is to prove the absolute

continuity of the joint laws concerning the solution to (1) with Lipschitz continuous coefficients by usingMalliavin calculus.
In Fournier and Printems (2010), the authors proved that, if m = d = 1, A and B are Hölder continuous, then for t > 0,
the law of Xt is absolutely continuous with respect to the Lebesgue measure on R, where X is a weak or strong solution to
(1). They used the characteristic function of Xt to prove the absolute continuity of the law of Xt . As far as we know, their
technique cannot be extended to the multi-dimensional case.

In this article, first we prove the absolute continuity of the law of Xt = (X1
t , . . . , Xm

t ) with respect to the Lebesgue
measure on Rm. Then we prove that, for 1 ≤ i, i′ ≤ m, the law of (M i

t , X
i′
t ) is absolutely continuous with respect to the

Lebesgue measure on R2 when each Ai
l in (1) does not depend on the second space variable. To deal with the Malliavin
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derivative of M i
t , some delicate arguments stated as Lemmas 2 and 4 in this article are needed, and to study the time when

{X i
s, s ∈ [0, t]} attains its maximum on [0, t] is important for the proof of the absolute continuity of the law of (M i

t , X
i′
t ). To

analyze the law of (M i
t , X

i′
t )may be important in applications such as finance (see Fournié et al. (1999) or Chapter 6 of Nualart

(2006)).
We introduce some basic tools of Malliavin calculus that will be used throughout the article. We refer to Nualart (2006).

Let (Ω, F , P) be the canonicalWiener space which supports a d-dimensional BrownianmotionW . The class of real random
variables of the form F = f (Wt1 , . . . ,Wtn), f ∈ C∞

b (Rnd
; R), 0 ≤ t1, . . . , tn ≤ t is denoted by S. D1,p denotes a Banach space

which is the completion of S with respect to the norm

∥F∥1,p = E[|F |
p
]
1
p +

E

 t

0

d
j=1

|Dj
rF |

2dr

 p
2


1
p

,

where

Dj
rF :=

n
i=1

∂ f
∂xji

(Wt1 , . . . ,Wtn)1[0,ti](r).

Dk,p is defined analogously, and its associated norm is denoted by ∥ · ∥k,p. Also, we define Dk,∞
= ∩p≥1 Dk,p and D∞

=

∩p≥1 ∩k≥1 Dk,p. For F ∈ D1,2, we define ∥DF∥
2
H :=

 t
0

d
j=1 |Dj

rF |
2dr .

Now let us introduce a localization of Dk,p. Dk,p
loc denotes the set of random variables F such that there exists a sequence

{(Ωn, Fn), n ≥ 1} ⊂ F × Dk,p with the following properties.

(i) Ωn ↑ Ω , a.s.
(ii) F = Fn, a.s. on Ωn.

2. The existence, uniqueness, and differentiability of solutions to (1) and the absolute continuity of the probability
law of Xt

In this section, first we prove the existence, uniqueness, and differentiability of solutions to (1). Then we prove that for
t > 0 the law of Xt is absolutely continuous with respect to the Lebesgue measure on Rm where X is the solution to (1).

We assume the following.

(A1) There exist K , L > 0 such that

|A(t, x1, x2) − A(t, x′

1, x
′

2)| + |B(t, x1, x2) − B(t, x′

1, x
′

2)| ≤ K(|x1 − x′

1| + |x2 − x′

2|),

|A(t, x1, x2)| + |B(t, x1, x2)| ≤ L,

for any x1, x2, x′

1, x
′

2 ∈ Rm and t ≥ 0.
(A2) A(t, x1, x2) is continuous with respect to (t, x1, x2).
(A3) There exists c > 0 such that

|vTA(t, x1, x2)|2 ≥ c|v|
2,

for any v ∈ Rm, x1, x2 ∈ Rm, and t ≥ 0.

Throughout this article, we use C or Ci, i ∈ N to denote a positive constant which may depend on constants K , L, d,m, p,
and t .

First, let us prove a lemma on the existence of a unique solution to (1).

Lemma 1. Assume (A1). Then (1) has a unique strong solution for any initial value x ∈ Rm. Moreover, we have E[|M i
t |
p
] ≤ C for

any t ≥ 0, 1 ≤ i ≤ m, and p ≥ 2.

Proof. For s ∈ [0, t], we use the Picard iteration method to define

X (0),i
s := xi

X (n+1),i
s := xi +

d
l=1

 s

0
Ai
l(u, X

(n)
u ,M(n)

u )dW l
u +

 s

0
Bi(u, X (n)

u ,M(n)
u )du, 1 ≤ i ≤ m, n ≥ 0,

where X (n)
u := (X (n),1

u , . . . , X (n),m
u ) and M(n)

u := (maxv≤u X (n),1
v , . . . ,maxv≤u X (n),m

v ). By (A1) it is straightforward to prove
that {X (n)

s , s ∈ [0, t]} converges to the solution to (1) with limn→∞ E[maxs≤t |X
(n)
s −Xs|

2
] = 0 for any t ≥ 0. The uniqueness

follows from (A1) and Gronwall’s lemma. Since t ≥ 0 is arbitrary, we have the existence of a unique solution to (1). We have
E[|M i

t |
p
] ≤ C due to (A1). �
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Remark 1. Under (A1)–(A3), for any t ≥ 0, {X i
s, s ∈ [0, t]} attains itsmaximumon [0, t] on a unique point τ i

t and 0 < τ i
t < t ,

a.s. This follows along the lines of the ideas of the proofs of Propositions 1 and 18 in Hayashi and Kohatsu-Higa (2013).

Let us prove a lemma on the differentiability of the maximum of a continuous process which is similar to Proposi-
tion 2.1.10 of Nualart (2006).

Lemma 2. For t ≥ 0, let {X̂s, s ∈ [0, t]} be a one-dimensional continuous process. Suppose that

(i) E[sups≤t |X̂s|
2
] < ∞,

(ii) for any s ∈ [0, t], X̂s ∈ D1,2 and E[sups≤t ∥DX̂s∥
2
H ] < ∞.

Then M̂t = sups≤t X̂s ∈ D1,2, and we have

E

∥DM̂t∥

2
H


≤ E


sup
s≤t

∥DX̂s∥
2
H


. (2)

Moreover, if we assume that

(iii) {X̂s, s ∈ [0, t]} attains its maximum on a unique point τ̂ ∗
t ,

(iv) for 1 ≤ j ≤ d, and almost every r, {Dj
r X̂s, s ∈ [0, t]} is continuous except for s = r, and

(v) for 1 ≤ j ≤ d, E[
 t
0 sup0≤s≤t |D

j
r X̂s|

2dr] < ∞,
then we have

DrM̂t = Dr X̂τ̂∗
t
, r-a.e., (3)

where we have defined Dr X̂τ̂∗
t

:= Dr X̂s|s=τ̂∗
t
.

Proof. Let {tk}k≥0 be a dense subset of [0, t], and define

M̂n
t := max{X̂t1 , . . . , X̂tn}.

Define

A1 := {X̂t1 = M̂n
t }, Ak := {X̂t1 ≠ M̂n

t , . . . , X̂tk−1 ≠ M̂n
t , X̂tk = M̂n

t }, 2 ≤ k ≤ n.

Then, by the local property of operator D, we have

DM̂n
t =

n
k=1

1AkDX̂tk .

By Proposition 2.1.10 of Nualart (2006), M̂t = sup0≤s≤t X̂s belongs to D1,2 and DM̂n
t → DM̂t(n → ∞) in the weak topology

of L2(Ω; L2([0, t]; Rd)) under (i) and (ii). We obtain (2) from E[∥DM̂t∥
2
H ] ≤ lim infn→∞ E[∥DM̂n

t ∥
2
H ].

Let us prove (3). For ω ∈ Ak, we define τ̂ ∗
n := tk. Then τ̂ ∗

n → τ̂ ∗
t , a.s., and we have

DM̂n
t =

n
k=1

1AkDX̂τ̂∗
n = DX̂τ̂∗

n ,

where we have defined DX̂τ̂∗
n := DX̂s|s=τ̂∗

n . Note that, if r = τ̂ ∗
n , then Dr X̂τ̂∗

n is not well defined, due to the discontinuity; thus
the rigorous meaning of the above equality is that DrM̂n

t = Dr X̂τ̂∗
n , r-a.e. with probability 1.

Now let us prove that

E

 t

0

d
j=1

Dj
r X̂τ̂∗

n u
j
rdr


→ E

 t

0

d
j=1

Dj
r X̂τ̂∗

t
uj
rdr


, (4)

for any u ∈ L2(Ω; L2([0, t]; Rd)). We have

E

 t

0

d
j=1

Dj
r X̂τ̂∗

n u
j
rdr


− E

 t

0

d
j=1

Dj
r X̂τ̂∗

t
uj
rdr


= E

 t

0

d
j=1

(Dj
r X̂τ̂∗

n − Dj
r X̂τ̂∗

t
)uj

rdr


. (5)

From (iv), we have Dj
r X̂τ̂∗

n → Dj
r X̂τ̂∗

t
for r ≠ τ̂ ∗

t then Dj
r X̂τ̂∗

n → Dj
r X̂τ̂∗

t
, r-a.e. with probability 1. As |Dj

r X̂τ̂∗
n − Dj

r X̂τ̂∗
t

|
2

≤

2 sup0≤s≤t |D
j
r X̂s|

2 and (v), we have t

0

d
j=1

|Dj
r X̂τ̂∗

n − Dj
r X̂τ̂∗

t
|
2dr → 0, a.s.
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Due to E[|Dj
r X̂τ̂∗

n − Dj
r X̂τ̂∗

t
|
2
] ≤ 2E[sup0≤s≤t |D

j
r X̂s|

2
] and (v), we have

lim
n→∞

E

 t

0

d
j=1

|Dj
r X̂τ̂∗

n − Dj
r X̂τ̂∗

t
|
2


dr = 0.

Then we obtain (4). Since DM̂n
t converges to DM̂t weakly in L2(Ω; L2([0, t]; Rd)) and (4) holds, we have

E

 t

0

d
j=1


Dj
r X̂τ̂∗

t
− Dj

rM̂t


uj
rdr


= 0,

for any u ∈ L2(Ω; L2([0, t]; Rd)). By the fact that M̂t belongs to D1,2 and (v), we have {Dr X̂τ̂∗
t

− DrM̂t , r ∈ [0, t]} ∈

L2(Ω; L2([0, t]; Rd)). Therefore we have (3) by taking ur = Dr X̂τ̂∗
t

− DrM̂t , and this finishes the proof. �

Remark 2. In Lemma 2, if we assume that {X̂s, s ∈ [0, t]} is adapted, then we have Dr X̂τ̂∗
t

= 0 for almost every r such that
r > τ̂ ∗

t . Thus, in this case, we can write DrM̂t = 1[0,τ̂∗
t )(r)Dr X̂τ̂∗

t
, r-a.e.

Next, let us prove the differentiability of the solution to (1) in Malliavin sense.

Lemma 3. Assume (A1)–(A3). Then, for s ∈ [0, t] and 1 ≤ i ≤ m, X i
s,M

i
s belong to D1,2. Moreover, Dj

rX i
s satisfies the following

equation:

Dj
rX

i
s = Ai

j(r, Xr ,Mr) +

 s

r


Āi
k,l(u)D

j
rX

k
u + Ãi

k,l(u)D
j
rM

k
u


dW l

u +

 s

r


B̄i
k(u)D

j
rX

k
u + B̃i

k(u)D
j
rM

k
u


du, (6)

for r ≤ s, a.e., and

Dj
rX

i
s = 0, (7)

for r > s, a.e., where Āk,l(u), Ãk,l(u), B̄k(u), and B̃k(u) are uniformly bounded and adapted m-dimensional processes.

Proof. Wewill use the Picard approximation from Lemma 1, so X (n)
s ,M(n)

s are the processes constructed by recurrence there.
The proof of this lemma uses the proof of Theorem 2.2.1 of Nualart (2006). We need to extend the proof to an equation with
coefficients which depend on the maximum process. We start by proving that X (n),i

s ∈ D1,2 for s ∈ [0, t], 1 ≤ i ≤ m, and
n ≥ 0. If we assume that X (n),i

s ∈ D1,2 and E[
 s
0 supu≤v ∥DX (n),i

u ∥
2
Hdv] < ∞ for s ∈ [0, t], then we have M(n),i

s ∈ D1,2 for
s ∈ [0, t], and

E
 t

0

 t

0
|Dj

r(A
i
l(u, X

(n)
u ,M(n)

u ))|2drdu


≤ C
m

k=1

E
 t

0
sup
u≤s

∥DX (n),k
u ∥

2
Hds


by (2). Therefore we have X (n+1),i
s ∈ D1,2 for s ∈ [0, t], and

Dj
rX

(n+1),i
s = Ai

j(r, X
(n)
r ,M(n)

r ) +

 s

r


Ā(n),i
k,l (u)Dj

rX
(n),k
u + Ã(n),i

k,l (u)Dj
rM

(n),k
u


dW l

u

+

 s

r


B̄(n),i
k (u)Dj

rX
(n),k
u + B̃(n),i

k (u)Dj
rM

(n),k
u


du,

where Ā(n)
k,l (u), Ã

(n)
k,l (u), B̄

(n)
k (u) and B̃(n)

k (u) are uniformly bounded and adapted m-dimensional processes. From this
expression, we have

m
i=1

E

sup
u≤s

∥DX (n+1),i
u ∥

2
H


≤ C1 + C2

 s

0

m
i=1

E

sup
u≤v

∥DX (n),i
u ∥

2
H


dv, (8)

and this implies thatM(n+1),i
s ∈ D1,2 and E[

 s
0 supu≤v ∥DX (n+1),i

u ∥
2
Hdv] < ∞ for s ∈ [0, t], by Lemma 2.

Due to (8) and Lemma 2, we have supn E[∥DX (n),i
s ∥

2
H ] < ∞ and supn E[∥DM(n),i

s ∥
2
H ] ≤ supn E[supu≤s ∥DX

(n),i
u ∥] < ∞. By

the fact that X (n),i
s → X i

s , M
(n),i
s → M i

s in L2(Ω) and Lemma 1.2.3 of Nualart (2006), X i
s and M i

s belong to D1,2 for s ∈ [0, t].
Moreover, DX (n),i

s and DM(n),i
s converge to DX i

s and DM i
s in the weak topology of L2(Ω; L2([0, t]; Rd)). Let us prove (6). We

have

E
 t

0

 t

0
|Dj

r(A
i
l(u, Xu,Mu))|

2drdu


≤ C
m

k=1

 t

0
E

∥DXk

u∥
2
H + ∥DMk

u∥
2
H


du < ∞
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by E[∥DMk
u∥

2
H ] ≤ lim infn→∞ E[∥DM(n),k

u ∥
2
H ] ≤ lim infn→∞ E[supv≤u ∥DX (n),k

v ∥
2
H ] and (8). Therefore we have (6), and the

proof is completed. �

Lemma 4. Assume (A1)–A3) . Then, for {X i
s, s ∈ [0, t]} and p ≥ 2, we have

E
 s

0
sup
r≤u≤s

|Dj
rX

i
u|

pdr


< ∞, (9)

and assumptions (i)–(v) of Lemma 2 hold. Moreover, for s ∈ [0, t] and p ≥ 2, X i
s,M

i
s ∈ D1,p.

Proof. First, let us prove (9) for p = 2. We have

d
j=1

E
 s

0
sup
r≤u≤s

|Dj
rX

i
u|

2dr


≤ C1 + C2

m
k=1

 s

0
E

∥DXk

v∥
2
H + ∥DMk

v∥
2
H


dv < ∞,

by (6) and (8) and E[∥DMk
v∥

2
H ] ≤ lim infn→∞ E[∥DM(n),k

v ∥
2
H ] ≤ lim infn→∞ E[supu≤v ∥DX (n),k

u ∥
2
H ]. This implies that (v)

holds for X i. (i) follows from Lemma 1, and we have (ii) by (9) for p = 2. (iii) holds due to Remark 1, and we have (iv)
by (6) and (7).

Let us prove (9) for p > 2. It suffices to prove that

E

 t

0

m
i=1

d
j=1

sup
r≤s≤t

|Dj
rX

i
s|
pdr


≤ C1 + C2

 t

0
E

 u

0

m
i=1

d
j=1

sup
r≤s≤u

|Dj
rX

i
s|
pdr


du, (10)

but we have (10) easily by (3), (6) and (7). From (9), we have X i
s,M

i
s ∈ D1,p for s ∈ [0, t] and p ≥ 2. �

Now we consider twom × mmatrix-valued processes defined by

Y i
j (s) = δi

j +

 s

0
Āi
k,l(u)Y

k
j (u)dW

l
u +

 s

0
B̄i
k(u)Y

k
j (u)du, 1 ≤ i, j ≤ m (11)

and

Z i
j (s) = δi

j −

 s

0
Z i
k(u)Ā

k
j,l(u)dW

l
u −

 s

0
Z i
k(u)


B̄k
j (u) − Āk

α,l(u)Ā
α
j,l(u)


du, 1 ≤ i, j ≤ m. (12)

By the argument in Section 2.3 of Nualart (2006), we have Y−1(s) = Z(s). Let us express Dj
rX i

s in terms of Y (s) and Z(s).

Lemma 5. For s ∈ [r, t] and 1 ≤ i ≤ m, 1 ≤ j ≤ d, Dj
rX i

s satisfies

Dj
rX

i
s = Y i

k(s)Z
k
k′(r)A

k′
j (r) + Y i

k(s)
 s

r
Zk
k′(u)Ã

k′
l′,l(u)D

j
rM

l′
u dW

l
u + Y i

k(s)
 s

r
Zk
k′(u)


B̃k′
l′ (u) − Āk′

α,lÃ
α
l′,l(u)


Dj
rM

l′
u du. (13)

Proof. We have (13) easily by (6), (11), (12), and Itô’s formula. �

Now we prove the absolute continuity of the law of Xt , which is the main theorem of this section.

Theorem 1. Assume (A1)–(A3). Then, for t > 0, the law of Xt is absolutely continuous with respect to the Lebesgue measure on
Rm.

Proof. Let us prove
 t
0 |vTDrXt |

2dr > 0 for nonzero vector v ∈ Rm. By (13), we have

|vTDrXt |
2

≥
1
2

d
j=1

 m
i=1

viY i
k(t)Z

k
k′(r)A

k′
j (r)


2

−

d
j=1

 m
i=1

viY i
k(t)

 t

r
Zk
k′(s)Ã

k′
l′,l(s)D

j
rM

l′
s dW

l
s +

 t

r
Zk
k′(s)[B̃

k′
l′ (s) − Āk′

α,lÃ
α
l′,l(s)]D

j
rM

l′
s ds


2

=:
1
2

d
j=1

 m
i=1

viY i
k(t)Z

k
k′(r)A

k′
j (r)


2

+ Ar,t . (14)
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By Schwartz’s inequality, Burkholder–Davis–Gundy’s inequality, and Lemma 4, we have

E

 t

t−ε

Y i
k(t)

 t

r
Zk
k′(s)[B̃

k′
l′ (s) − Āk′

α,l(s)Ã
α
l′,l(s)]D

j
rM

l′
s ds
2 dr



≤ ε
3
2 CE


|Y (t)|8

 1
4 E

sup
s≤t

|Z(s)|8
 1

4 m
l′=1


E
 t

0
sup
r≤s≤t

|Dj
rX

l′
s |

4dr
 1

2

< ∞

and

E

 t

t−ε

Y i
k(t)

 t

r
Zk
k′(s)Ã

k′
l′,l(s)D

j
rM

l′
s dW

l
s

2


≤ ε
3
2 CE


|Y (t)|4

 1
2 E

sup
s≤t

|Z(s)|8
 1

4 m
l′=1


E
 t

0
sup
r≤u≤t

|Dj
rX

l′
s |

8dr
 1

4

< ∞.

This shows that 1
ε

 t
t−ε

Ar,tdr → 0 in L1(Ω) as ε tends to 0. Therefore, there exists {εn}n∈N such that εn ↘ 0(n → ∞) and

lim
n→∞

1
εn

 t

t−εn

Ar,tdr = 0, a.s.

On the other hand, by the continuity of Ai
j, we have

lim
n→∞

1
εn

 t

t−εn

d
j=1

 m
i=1

viY i
k(t)Z

k
k′(r)A

k′
j (r)


2

=

d
j=1

 m
i=1

viAi
j(t, Xt ,Mt)


2

> 0,

for any nonzero vector v ∈ Rm by (A3). By Lemma 4 and Theorem 2.1.2 of Nualart (2006), the proof is completed. �

3. The absolute continuity of the probability law of (X i
t,M

i′
t )

In this section, we prove the absolute continuity of the law of (X i
t ,M

i′
t ), 1 ≤ i, i′ ≤ m, in a special case. That is:

(A4) Ai
l, 1 ≤ i ≤ m, 1 ≤ l ≤ d, do not depend on the second space variable,

in addition to (A1)–(A3).

Remark 3. Under (A1)–(A4), Ãk′
l′,l(u) ≡ 0 in (13).

Theorem 2. Assume (A1)–(A4). Then, for t > 0 and 1 ≤ i, i′ ≤ m, the law of (X i
t ,M

i′
t ) is absolutely continuous with respect to

the Lebesgue measure on R2.

Proof. Let v1, v2 ∈ R \ {0}. Note that, by Lemmas 2 and 4, for t > 0, we have Dj
rM i′

t = 1
[0,τ i′

t )
(r)Dj

rX i′
s |s=τ i′

t
. For simplicity

of notation, we define Dj
rX i′

τ i′
t

:= Dj
rX i′

s |s=τ i′
t
. First, we assume that v1 ≠ 0, v2 ≠ 0. By Schwartz’s inequality and the trivial

inequality a2 + b2 ≥ 2ab, a, b ∈ R, we have t

0

(v1, v2)


D1
r X

i
t · · ·D

d
rX

i
t

D1
rM

i′
t · · ·Dd

rM
i′
t

2 dr
=

 t

0

d
j=1

|v1Dj
rX

i
t |
2dr + 2

 τ i′
t

0

d
j=1

v1Dj
rX

i
tv2Dj

rX
i′

τ i′
t
dr +

 τ i′
t

0

d
j=1

|v2Dj
rX

i′

τ i′
t
|
2dr

≥

 t

0

d
j=1

|v1Dj
rX

i
t |
2dr − 2

 τ i′
t

0

d
j=1

|v1Dj
rX

i
t |
2dr

 1
2  τ i′

t

0

d
j=1

|v2Dj
rX

i′

τ i′
t
|
2dr

 1
2

+

 τ i′
t

0

d
j=1

|v2Dj
rX

i′

τ i′
t
|
2dr

≥ 2

 t

0

d
j=1

|v1Dj
rX

i
t |
2dr

 1
2
 τ i′

t

0

d
j=1

|v2Dj
rX

i′

τ i′
t
|
2dr

 1
2

− 2

 τ i′
t

0

d
j=1

|v1Dj
rX

i
t |
2dr

 1
2  τ i′

t

0

d
j=1

|v2Dj
rX

i′

τ i′
t
|
2dr

 1
2
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= 2|v1 ∥ v2|

 τ i′
t

0

d
j=1

|Dj
rX

i′

τ i′
t
|
2dr

 1
2

 t

0

d
j=1

|Dj
rX

i
t |
2dr

 1
2

−

 τ i′
t

0

d
j=1

|Dj
rX

i
t |
2dr

 1
2

 . (15)

By (A4) and the same calculation as in the proof of Theorem 1, we can prove that there exist {εi
n}n∈N and {εi′

n }n∈N such that

lim
εin↘0

1
εi
n

 t

t−εin

d
j=1

|Dj
rX

i
t |
2dr ≥

1
2

d
j=1

|Ai
j(t, Xt)|

2 (16)

and

lim
εi

′

n ↘0

1
εi′
n

 τ i′
t

τ i′
t −εi

′

n

d
j=1

|Dj
rX

i′

τ i′
t
|
2dr1

{τ i′
t −εi

′

n >0} ≥
1
2

d
j=1

|Ai′
j (τ

i′
t , X

τ i′
t
)|2, (17)

almost surely. As t > τ i
t , there exists N ′

∈ N such that t

t−εin

d
j=1

|Dj
rX

i
t |
2dr ≥

εi
n

2

d
j=1

|Ai
j(t, Xt)|

2,

 τ i′
t

τ i′
t −εi

′

t

d
j=1

|Dj
rX

i′

τ i′
t
|
2dr ≥

εi′
n

2

d
j=1

|Ai′
j (τ

i′
t , X

τ i′
t
)|2,

t − εi
n > τ i′

t ,

for any n ≥ N ′, almost surely. This implies that the right-hand side of (15) is strictly positive for any v ∈ R2 such that
v1 ≠ 0, v2 ≠ 0. Second, when v1 = 0 or v2 = 0, we have t

0

(v1, v2)


D1
r X

i
t · · ·D

d
rX

i
t

D1
rM

i′
t · · ·Dd

rM
i′
t

2 dr > 0, a.s.

by (16) and (17). This finishes the proof. �

Remark 4. The general 2m-dimensional study of the law of (X1
t , . . . , Xm

t ,M1
t , . . . ,M

m
t ) does not followwith the arguments

presented here, due to the particular structure used in the calculation of (15).

Corollary 1. Under (A1)–(A4), by the same calculation as that in Theorem 2, for t > 0 and 1 ≤ i ≠ i′ ≤ m, we can prove the
absolute continuity of the law of (M i

t ,M
i′
t ) conditioned by the set {τ i

t ≠ τ i′
t }.

Now, we give an example for Ai
l and Ai′

l that {τ i
t ≠ τ i′

t } holds, a.s.

Example 1. For each k = i, i′, let {Xk
s , s ∈ [0, t]} satisfy

Xk
s = xk +

 s

0
Bk(u, Xu,Mu)du + Ak

kW
k
s ,

where Ak
k is a nonzero constant. Then τ i

t ≠ τ i′
t , a.s.

Proof. By Girsanov’s theorem, the independence of Brownian motions, and the explicit density function for τ k
t , k = i, i′

(Problem 8.17 in Chapter 2 of Karatzas and Shreve (1991)), we obtain the existence of the density function for τ i
t − τ i′

t . Then
we have P(τ i

t = τ i′
t ) = 0. �

4. A concluding remark

In this article,we have proved the absolute continuity of the laws ofXt and (X i
t ,M

i′
t )with Lipschitz continuous coefficients

under some additional assumptions. We end this article with some remarks on the law of the maximum of processes. There
are some theoretical and applicable results about the law of the maximum of continuous processes. In Nualart (2006), the
smoothness of the density function of the maximum of a Wiener sheet is proved. In Gobet and Kohatsu-Higa (2003), the
authors derived some integration by parts formulas involving the maximum and minimum of a one-dimensional diffusion
to compute the sensitivities of the price of financial products with respect to market parameters called Greeks. Recently,
the smoothness of the density function of the joint law of a multi-dimensional diffusion at the time when a component



2506 T. Nakatsu / Statistics and Probability Letters 83 (2013) 2499–2506

attains its maximumwas proved in Hayashi and Kohatsu-Higa (2013). In these articles, Garsia–Rodemich–Rumsey’s lemma
(Lemma A.3.1 of Nualart (2006)) plays an important role in obtaining the results. A more recent article, Yue and Zhang
(in press), showed that the laws of a perturbed SDE and a perturbed reflected SDE are absolutely continuous with respect
to the Lebesgue measure on R.
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