Chemical Engineering Journal 175 (2011) 39-48

Chemical Engineering Journal

Contents lists available at SciVerse ScienceDirect

Chemical
Engineering
Journal

journal homepage: www.elsevier.com/locate/cej

State and input estimation in phytoplanktonic cultures using

quasi-unknown input observers*

E. Rocha-Cézatl?, A.Vande Wouwer?:*

3 Departamento de Ingenieria Mecatrénica, Universidad Nacional Auténoma de México (UNAM),
Lab. de Ing. Mec. “Ing. Alberto Camacho Sanchez”.Cd., Universitaria, CP 04510. Mexico City, Mexico
b Service d’Automatique, Université de Mons (UMONS), Boulevard Dolez 31, B-7000 Mons, Belgium

ARTICLE INFO ABSTRACT

Article history:

Received 3 April 2011

Received in revised form 30 August 2011
Accepted 7 September 2011

Keywords:

Robust estimation
Software sensor
Monitoring

Bioprocess
Environmental system
Microalgae

Biological and environmental systems are often influenced by unknown inputs or disturbances, which
makes monitoring or state estimation more delicate. In this study, the simultaneous estimation of unmea-
sured state variables and partly unknown inputs is considered. Only qualitative prior information on these
inputs is used in the design procedure, leading to the concept of quasi-unknown input observers (QUIO).
These software sensors are applied to the estimation of concentrations, flow rates and light intensity in
phytoplanktonic cultures in the chemostat. Implementation and numerical tests are discussed, based on
simulation and experimental data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

State estimation in bioprocesses, by so-called software sensors,
is particularly important for monitoring and control purposes,
as hardware sensors might be expensive (high acquisition and
maintenance costs), are not always available for the specific mea-
surement under consideration (due to the difficulty in designing a
measurement principle offering accurate and reliable on-line data)
and have stringent operating conditions (calibration, processing
time, sample destruction in some cases).

Software sensors blend the predictive information of a dynamic
process model with the corrective information of available hard-
ware sensors [5,11,9]. However, bioprocess models are usually
uncertain due to the inherent difficulty of inferring the model
structure (reaction scheme and kinetic laws) and estimating the
model parameters (yield coefficients and kinetic parameters) from
experimental data. In addition, there exist either disturbances or
uncertain input variables (both of them considered as unknown
inputs) that affect the performance of the estimators.

Regarding all these possible adverse scenarios, it is therefore
required to adopt a robust estimation approach. There are several
published results that offer solutions to this problem, for instance,
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asymptotic observers [1], interval observers [12,15], bundle inter-
val observers [4,16], unknown input observers [7,8,14,18,21,25,26].

In addition to the on-line reconstruction of key-component con-
centrations, it can also be important to estimate unknown inputs
or disturbances acting on the system. It is particularly relevant in
environmental processes, such as biological wastewater treatment
systems where the influent flow rate and concentrations are often
only partially measured, or anaerobic digestion processes where
influent concentrations are also partly known. It is also the case in
natural ecosystems (such as lakes, rivers, oceans) where external
influencing factors are difficult or even impossible to measure.

Unknown input observers (UIO) estimate the state variables of
a system robustly with respect to the disturbances or unknown
inputs that affect the system. For example, the famous asymptotic
observer proposed by Bastin and Dochain in the 90s [1], and which
has found so many applications in bioprocess state estimation prob-
lems, can be viewed as a specific UIO. The main idea behind this
observerisindeed to eliminate the uncertain kinetic model through
a state transformation.

The study of UIOs for linear systems is vast [7,8,14,18,26] and
several of the proposed design methods take a similar way: find-
ing one (or more) transformations that decouple the effect of the
unknown input from a part of the system. However, the exis-
tence of such transformations implies severe conditions for the
existence of UlOs.

These strong requirements are due to the fact that robustness
to any disturbance is required, since no prior information on the
disturbance is assumed. However, there are cases where some
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qualitative features of the unknown input are indeed known a
priori (for example one could know that the disturbance takes the
form of a step, but its amplitude remains unknown). In this case,
the disturbance is considered as a “quasi-unknown input” and in
[19], a design procedure has been proposed, where the known fea-
tures of the input are defined through an exosystem. The benefits of
this approach is either to weaken the existence conditions of UIOs
or to give more degrees of freedom in the design. The resulting
observer is called quasi-unknown input observer (QUIO).

Whereas QUIO have been mostly applied to state estimation and
fault detection [22], the focus of the present study is on the simul-
taneous estimation of unmeasured states and unknown inputs,
through a modification of the existence conditions given in [19].
Further, QUIO are evaluated in the framework of monitoring cul-
tures of microalgae operated in chemostat mode. In order to show
the practical value of this approach, it is applied to two different
case studies, which are investigated both in simulation an with
experimental data.

The paper is organized in three main sections. Unknown input
observers are introduced first, together with their existence con-
ditions, in Section 2. A decoupling transformation as well as the
concept of quasi-unknown inputs are then defined. Finally, the
QUIO design methodology is developed. In Section 3, the structure
of a dynamic model of microalgae culture is presented, with two
particular case studies. Section 4 implements these observers, and
evaluate their performance using both numerical simulations and
real experimental data. Finally, Section 5 draws some conclusions.

2. Unknown input observers

Consider the following linear system
X = Ax + Bu + Dw,
y==C, (M

z=0Gx

x(0) = xo

where x € R" is the state vector, u € RP is the known (control) input
vector, y ¢ R™ is the output (measurement) vector, w € R? is the
unknown input vector and z € RS is a linear transformation of the
state to be estimated.

An unknown input observer is a dynamical system

E=Ak+BoluT,yT]",  £0)=%&

(2)
“ LT T
Z= COS+DO[uTsyTsyTsyTs . ]

which produces an estimation of the states of (1) based on the
information on measured variables (u and y) and possibly on the
derivatives of the output, despite the effect of the unknown input
w, that is, lim¢_ o(z — 2) = 0 Yw.

The state vector of the observer is £ e R™ and according to its
dimension the following classification can be made: (a) if n, <n the
observer is said to be of reduced order; (b) if n, =n is said to be of
full order; (c) if ny > n is said to be of extended order.

2.1. Existence conditions

There are several approaches to the theory and design of UIOs
(see for example Refs. [6,8,13,19,26]), however, there are two nec-
essary and sufficient conditions for the existence of such observers.
They are presented in the following lemma.

Lemma 1. [13] Consider the linear system (1)
There exists a unknown input state observer (G=1) for this system
if and only if

{51 A -D
rk

=n+gq, VseCY 3)

C 0

rk(CD) = rk(D) = q (4)

Condition (3) can be understood as a minimum phase condition,
since the transmission zeros of the plant cannot be in the right-half
closed complex plane ((Car), i.e., the matrix in Eq. (3) can be rank
deficient for s-values in the left-half complex plane only. This latter
interpretation of one of the existence conditions suggests the idea
that the system is going to be “inverted”, and in order to obtain a
“stable” inverted system, the zeros must be in appropriate places.

On the other hand, condition (4) can be understood as a con-
dition of relative degree one for square systems (same number of
inputs and outputs). However, from a more general point of view,
it implies that the number of outputs (measurements) has to be
greater or at least equal to the number of unknown inputs. This is
an important and general condition in the framework of UlOs.

2.2. Decoupling transformation

One of the approaches to study UIOs [ 18] expresses the existence
conditions as well as the design of the UIO using a set of transfor-
mations that decouple the effect of the unknown inputs and bring
the system to a special form. It is formally presented in the next
lemma.

Lemma 2. [23,18] Without loss of generality assume that rk(D)=q,
rk(C)=m, rk(G)=s. There exists state x — Px, output’y — Qy and input
u — Ru transformations such that in the new coordinates, system (1)
takes the following form

Arr 0 0 0 A5G
AnC Axp 0 0 AxG
x=|A3C;, 0 Az 0 AssGCy | x+Bu
A41Cy DrAgy DrAsgz  Agy AysGy
D1Asy DiAs; Di1As3 DiAsqy  Ass
0 O
0 0 (5)
+]10 0 |w
0 D,
D; 0
C, 000 O
Y= [0 000 CJ
z=[G Gy G3 G4 Gs|x
and satisfies properties (i)-(vi). Denote n;=dim (4;), i=1, ..., 5,

q;=rk(D;), mj=1k(G),j=1, 2.

(i) Matrices Cy , Co, D1 and D are full rank.

(ii) Transmission zeros of the system are A(Az3)U A(A33).

(111) )\.(Azz) c C~and )\(A33) C (CO+'

(iv) The couples (Cy, A11) and (Cy, Ass) are observable. The couples
(A44, Dy) and (Ass, D1) are controllable.

(v) g1 =1k(D1)=1k(C2)=m>.

(vi) For every K the couple (Cy, Ass — D1K) is observable, i.e. system
(Cy, Ass, Dy) is perfectly observable. This implies that

sl —A55 —-D,

rank { G 0

:| =ns+¢q;, VseC.

A further important consequence of this property is that the
state x5 can be reconstructed from the output y, =Cyxs and a
finite number of its derivatives, without information on the input,



E. Rocha-Cézatl, A.Vande Wouwer / Chemical Engineering Journal 175 (2011) 39-48 11

i.e. there exist an integer § >0 and constant matrices M; such
that

8
x5 =y My
i=0

2.3. Quasi-unknown inputs

In some situations, as discussed in Ref. [19], it may occur that
the disturbance that affects a system is not completely unknown,
i.e., some qualitative features are known a priori, such as its shape
or frequency, and thus it is called a “quasi-unknown input”.

The possibility to use these known features has important con-
sequences:

e The existence conditions of an UIO are stringent and the knowl-
edge of some features of the disturbance signals can be used
to relax them. In some specific estimation problems, robustness
with respect to all disturbances is not required, but only with
respect to some of them. It is then more likely to prove the exis-
tence of an observer and to design it.

e The introduction of some information about the disturbances
can also give extra degrees of freedom in the assignation of the
observer dynamics, as will be shown in the applications.

In this study, where cultures of phytoplankton in the chemostat
will be considered, the unknown inputs will be related to flow rates
or concentrations that could vary stepwise, or to the light intensity
that could vary periodically.

The formal way to introduce the information about the distur-
bance is by defining an exosystem

Xe = AeXe + Dev, Xe(0) = Xeo
W = CeXe, (6)
Ze = GeXe

where x. ¢ R™ is the state vector, veRY% is an input vector and
Ze € RS isalinear combination of the states of the exosystem. Matri-
ces Ae, Ce, De and G, are constant of appropriate dimensions.

In the context of this study, the unknown input w in Eq. (6) is
produced by an exosystem without inputs, thatis D, = 0. To estimate
this unknown input, Ge = Ce.

¢ the exosystem that corresponds to a step function, is defined by
the following selection of matrices:

Ae=0, De=0, Co=1. (7)

The amplitude of the step is not part of the information included
in the exosystem. The amplitude could be expressed in the initial
conditions Xeq.

¢ the exosystem corresponding to a sinusoidal function is defined
with

0 0
Ae:{_w ‘(‘)’} De:[o}, Ce=[1 0]. (8)

As can be seen, the only information required about the sinu-
soidal is its frequency, not its amplitude. Again, the amplitude
could be included in the initial conditions.

2.4. Quasi-unknown input observers

With the concept of an exosystem producing the unknown input
w, an augmented system can be defined, which includes the plant
and the exosystem

Xq = AgXa + Bat + Dav,  X4(0) = Xqg
y = CaXa, (9)
Z = GgXq,
where
A DCe B
xT:[XT, XT],A = ,Bq =
a e a 0 A a 0
0 G O
Dq = ;Ca=[C 0],Go= :
De 0 Ge

The design of an unknown input observer for the augmented
system (9) implies the design of a quasi-unknown input observer
for the plant (1), that is, an observer design which considers a priori
knowledge of disturbances (quasi-unknown inputs) [19].

In order to design a QUIO the decoupling transformation will be
applied to the augmented system instead of the original system.
The following lemma deals with the existence conditions for the
QuIO.

Lemma 3. [19] System (1) has a quasi-unknown input observer,
possibly improper, if and only if Vs e Cg

sI—A; —Dq
sl —Aq —Dqg
rk =rk Cq 0 . (10)
Ca 0
Gq 0

The observer will have assignable dynamics if and only if (10) is satis-
fied Vs eC.

If De =0 then condition (10) is necessary and sufficient for the exis-
tence of a strictly proper observer. Its dynamics will be assignable if
the condition is satisfied Vs  C.

This condition can be simplified in some cases. For example, if
the complete augmented state vector is going to be estimated, i.e.,
the process state vector x and the extended state xe, which is related
to the unknown input according to Eq. (6), then G, =1 since G, =1.
Under this assumption, condition (10) can be written as follows

sI—A —DCe

rk 0 sl — Ae
C 0

=Nn+ne (11)

3. State and input estimation in phytoplanktonic cultures

The Quasi-unknown input observers are now applied to some
monitoring problems in phytoplanktonic cultures. First, dynamic
models are described, and a linearization is performed around an
operation point. Then the QUIOs are developed step-by-step and
tested in simulation and with real data.

3.1. Cultures of phytoplankton in the chemostat

The experimental setup considered in the following is the
chemostat, which is a bioreactor operated in continuous mode with
identical inlet and outlet flow rates, so as to keep a constant vol-
ume. The chemostat is a convenient device to control the growth
conditions of phytoplankton and to mimic conditions encountered
in natural ecosystems like lakes for instance. The chemostat has
been used extensively to study the growth of populations of micro-
organisms, and competition or cooperation between them [24].

3.2. Dynamic models of phytoplanktonic cultures

One of the most popular models for representing the uptake and
growth of phytoplankton on a single substrate is Droop model [10],
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which has received considerable attention since its publication in
1968. In recent years, a few more detailed models have been pro-
posed, accounting for additional effects, among which the model
presented in Ref. [20] is taken as a case study in the present work.
This model takes account of the influence of light intensity. Both
models can be represented in a generic way as

X(t) = —=D()X(t) + ¢1(P, X)
P(t) = —=D(t)P + ¢1(S, X) + ¢2(P, X) (12)
S(t) = D(t)[Sin(t) — S(£)] + ¢2(S, X)

where X is a variable related to the biomass concentration in the
bioreactor, P is a variable related to the internal substrate pools
within the cells, S is related to the external substrate concentra-
tion, Sj, is the inlet substrate concentration to the bioreactor (there
is no biomass inlet concentration so that X, =0), D(t)=F;,(t)/V
represents the dilution rate of the continuous bioreactor with a
constant volume V resulting from equal inlet and outlet flow rates
Fin(t)=Fout(t). Functions ¢ and ¢, are related to the growth rate
and functions ¢ and ¢, represent terms that depend on the uptake
rate. In these controlled conditions, decay is not significant and
is not accounted for in the models. More details are given in the
following.

3.2.1. Asimple uptake and growth model: Droop model

The specificity of Droop model [10], as compared to the classi-
cal model of Monod [17], is that it uncouples inorganic substrate
uptake and growth thanks to an intracellular storage of nutrients,
as represented in the following set of equations:

e — - (1_ Ko

X(t) = —D(OX(6) + (1 Q(t)) X(t)

. NOREEE Ko
Q(t)—pmm—ﬂ(l—@)Q(t) (13)
5(6) = D(O[Sin(t) — S(O)] — pm %xm

In the previous equations, X denotes the biovolume in (pum3/1)
and Q is the internal quota, defined as the quantity of nitrogen
per unit of biovolume. The biovolume is the volume of cells in
a given volume of culture medium, a quantity representing the
biomass concentration, which can be easily and rapidly measured.
D(t) is the dilution rate, S is the substrate (inorganic nitrogen)
concentration and S;, is the input substrate concentration. Func-
tion p(S) = pm(S(t)/(S(t) +Ks)) is the uptake rate, and w(Q) = (1 —
(Kq/Q(t))) is the growth rate. Parameters Ks and pm represent
a half-saturation coefficient for the substrate and the maximum
uptake rate, respectively. Parameter jt is the theoretical maximum
growth rate, obtained for an infinite internal quota and Kg is the
minimum internal quota allowing growth.

As a particular application, the culture of the chlorophyceae
Dunaliella tertiolecta is considered. As it is difficult to study the
evolution of phytoplankton in the open sea, the growth analysis
is carried out in a photo-bioreactor operated in chemostat (equal
inflow and outflow resulting in a constant volume). A more com-
plete description of the experimental setup can be found in Ref.
[2].

In this study, the objective is to design a software sensor recon-
structing Qand S, based on Droop model and on-line measurements
of X,in arobust way with respect to unknown variations in the input
w = D(t).

For convenience, in a way similar to Ref. [2], a simple change of
variable is made in order to simplify the writing of the equations

and to avoid the presence of independent terms in the second
one,

PmX
Si
Qe
Kq

S

x=T(X,Q,S) =

Si
The transformed system reads

X =f(x)+g(x, u)w

(14)
Yy =x1 = h(x)
with
axX1X2
X2 +1 —X1
= | a3———— — axx =
fx) bl g(x, u) 0
_ X1X3 1+u—x;3
X3 +

where a; = (Ks/s;) > 0,a; = 1 > 0, a3 = (pm/Kq) > 0.

As in Ref. [2], S;,(£)=si(1 +u(t)), u(t) being the input forcing the
system (u(t)>— 1), and s; the concentration in the influent without
input (u(t)=0).

3.2.2. A more detailed model with light influence
In Ref. [20], a more detailed model, taking the influence of the
incident light intensity is developed, as

X(t) = —D(X(£) — AX(t) + a(D)L(t)

. S(t) L(t)
) = ~DIONGE) + P e X(E) — VDN + L)
Lt (13)
i(t) = ~D(O)L(D) + y(I)Nm)% —BL(D)
5(t) = D()(Sin — S()) — pm S(ffif,(sxu)

Variable X now represents the particulate carbon concentra-
tion (carbon biomass) and the generic variable P, representing
the internal pools, is now a 2-vector with: P(1)=N, the internal
nitrogen concentration and P(2)=L the chlorophyllian nitrogen
concentration. The total particulate nitrogen can be computed as
N+L.

Functions ¢;,i=1, 2 which relate to the growth rate, are affected
by the light intensity I, i.e., ¢1=¢1(N, L, X, I) and ¢, =¢,(N, L, X,
I). B is the coefficient of chlorophyll degradation, A is the factor of
respiration, and functions y and a describe the influence of the light
intensity I in the process
OlK]_I(t) K¢

al(t)
=0k 10 V=0

As a particular application, the culture of the cryptophyceae
Rhodomonas salina is considered. The state estimation objective is
to reconstruct L, N and S, using the culture model together with
on-line measurements of X. The dilution rate D and input concen-
tration S;, are known, whereas the light intensity I is the unknown
input, which is has to be simultaneously estimated.

In this case, the definition of x, u and w is

X1 X
| *x2 _ L _lu | D _
x= X3 T IN|’ u_|:U2:|_|:Sm:|’ w=I
Xq S
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Since this model contains the effect of the light intensity and it
is represented by nonlinear terms, the state-space representation
of the model can be written as follows

X = f(x) + gu(x, u) + gw(x, W)

(16)
y=h(x)=x
where
7}\X1
—Bxz —u1Xq
f(X) = Pm X74x1 + ﬂXZ s gu(x7 u) = Rt
X4+ Ks —U1X3
B X4 ug (U — X4)
Pm i+ Ks
a(w)xa
X
y(w)xs =2
X1
gw(xs W) = X
—ywixs 2
V! X
0

In Droop model, whatever input is considered as unknown (S;,
or D), one can obtain a dynamic equation affine in this input. The
second, more detailed, model is again affine in the dilution rate or
input concentration, whereas it is not affine with respect to the
light intensity.

One possible solution for this structural problem would be to
directly consider functions a(I) and y(I) as unknown terms. How-
ever, the existence conditions of the QUIO then requires at least
two independent measurements.

3.2.3. Model linearization

The considered bioprocess models are nonlinear, but as the cul-
tures are operated in chemostat, i.e., around a stationary point, it is
appealing to avoid the use of complex nonlinear state estimation
techniques, and to apply the available linear QUIO framework. The
next step is therefore a model linearization.

For Droop model (13), considering the steady-state point

X1L
X=x.=|xXxy |, d=d, U=uy
X3L

the linearized system is

yin iz O 0 Y15
(&)x = 0 Y22 V23 | Ex + 0 Eu + 0 b))
y31 0 33 V34 V35 (17)
Ex = AgEx + Begy + Db

yi=[1 0 0]ex=Cety

where exy=x —x[, ey =u—u;,§=d —d, and

Xy _ X3L
Y1 = Xop + 1 V31 = Xt
X1L a1X1L

Y2=0G——— VYi3=-———"75—d

(20 + 1) (x3p +aq)
V15 = —X1L Y34 =dp
V22 = —03 V3s =1+4+up —x31

aas
Y3 = —— 2

(%31 +aq)

For the model with light influence (15), consider the steady-
state point

X u

X=X = XzL ,UL=[u1L],W=WL
3L 2L
XaL

which can be computed in the following order by:

= Ksuqp[k(w)(urp + A) + (ur + B)]
Pmy(wr) — ug[k(we)(urg +24) + (u1L + B)]
Xap = (u2L — x4 )(u1 + B)
k(wp)(uip +A) + (urL + B)
y(w)(u2L — x41)
w)(ur +A) + (ug + B)
Xop = k(wp )(u2L — xq1 )1 +2)
k(wp)(uip +A) + (ugL + B)
where

k(w) = y(w)

a(w)

XL = K

The linearized system is

yn vz 0 O n1 O
go= | Y21 Y2 Va3 O 0

V31 V32 V33 V34 UET I

var 0 0 ya N41 742
{n (18)
$a1

+ w

{31
0

&x =Aséx +Begy + Do

yu=[1 0 0 Olex=0Cetx
where exy=X—X[, &y =Uu—U, @ =W — Wi, and
OlK[

N1 = —X1L {11 = ——=X1
n N (K +wp)?
21 = —X2L
: oK Ke(KiKe —w2)  x3xo;
=—x 21 =
= (K5 +wi)(Ke +wi))? XL
= Uy — X
41 =UaL = XaL @K K(KiKe = w2)  x31%01
- 31 =—
M4z = tht ((K; +w)(Ke +wp))® XL
i1 =-A—-uy
_ awr
Y12 = K +w,
_ aK Kcw X31X2L
V2= TG T wi ) (Ke + wr) X2,
ak Kcw, X3L
=—B-u — - =
v =—F-t+ (Kj +wp )(Ke 4+ wp) X1,
_ O[KLKCWL XA
Y25 = K+ wi)(Ke +w) X
a1 = p X4l akiKcwyg X31X2L
- m
Xqr +Ks  (Kp+wp)(Ke +wi) x2)
Va2 = ,8 _ ozKLKCwL Xﬂ
32 (Kr +wr)(Ke +wr) xqp
Va3 = —u aKLchL Xor
37T K+ wi)(Ke + wr) xag
x11Ks
V34 =pPm—————
(xar +Ks)?
Vai = — PmX41
! Xx41 + Ks
x1LK:
Vag = —PmXiLlts

(xar + Ks)*
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4. Design and implementation of the observers

First, the existence conditions are checked for both estimation
problems. Then, the design procedure is applied and numerical
results are presented and discussed.

4.1. Existence conditions

For Droop model (13), the complete state vector is to be esti-
mated (G=1I) as well as the unknown input (G, = 1). The existence
condition for the augmented system (11) is fulfilled, since

s—yn —-vi2 O —Y15
sl—-A; —DeCe 0 S—y2 -y23 O

rk |0 sI—Ae | =1k | —y31 0 S—¥33 —¥35
C 0 0 0 0 S

1 0 0 0

can be proved to be 4 for all s. This also means that the augmented
system has no zero.

For the more detailed model (15), the unknown input is pro-
duced by a second order exosystem, so that G.=[10] and G4 # I.
However, a condition similar to Eq. (11) can be given

sl-A -DCe
0 sl-A.| _
rk C 0 =N+ne (19)
0 Ge

The existence condition for the augmented system (19) is ful-
filled, since

sl—As —D.Ce
0 sl — Ae
rk c 0
0 Ge
s-=yin —-rz O 0 -¢11 0
~¥21  S—VYa2 —VYa3 0 —f1 0
-¥31 —V32  S—V33 V34 -831 O
k| v 0 0 S—vyas O 0
0 0 0 0 s —w
0 0 0 0 w S
1 0 0 0 0 0
0 0 0 0 1 0 |

can be proved to be 6 for all s. This also means that the augmented
system has no zero.

4.2. Observer design, implementation and tests

A constructive approach using the decomposition of Lemma 2
can now be introduced.

Lemmad4. [18]Considersystem (1)expressed in the special form (5).
There exists an UIO (possibly improper) if and only if

G3=0, and G4=0 (20)
There exists an UIO with assignable dynamics if and only if

and G4=0 (21)

G,=0, G3=0,

Furthermore, if (20) or (21) are satisfied:

1. There exists a proper observer if and only if
Gs = MGy, forsomematrix M. (22)

2. There exists a strictly proper observer if and only if G5 =0.

An observer (possibly of reduced order) with the mentioned prop-
erties is given by

& =Anér +Biu+Aisy, + Hiy (Gi& —y1)
&) = A&y + Bl + Agsyo + Aoyr

)
. Gs Mym
Z2=Gi§1+ G + IZ=0: w2
My2, if(22)
where Hy1 is selected such that (A11 + H11Cy) is Hurwitz, and M; is as

in Lemma 2, part (vi). If (21) is satisfied, then the corresponding part
of &, is extracted from the observer.

In the following sections we present the application of the
design procedure to both models of phytoplankton cultures.

4.2.1. QUIO for Droop model

For Droop model (13) the numerical values of the system param-
eters are ppy, =9.40 wmol/mm?3/day, Ks =0.105 wmol/l, i = 2 1/day,
kg =1.8 wmol/mm3, S;, =100 pmol/l, s; = 100.

Considering the following steady-state point in the orig-
inal  coordinates  S;=0.0479 pmol/l,  X;=30.5409 mm3/l),
Q. =3.2727 pmol/mm?3, d;=0.91/day the steady-state point in
the new coordinates is:

X1L 2.8708
xp=|xy | =|0.8182
X3L 0.0005

The linearized system at this point is

0 1.734 0 0 -2.87
éXZ[ 0 -2 2345]8x+[0]8u+[ 0 ]3
-0.313 0 -1290 0.9 0.999
y=[1 0 Olex=¢x

Note that the measured variable in the linearized model is &y,
and the unknown input is §.

In this study, no forcing input is considered, i.e., u=0 as well as
u; =0, and only the effect of an unknown dilution rate (disturbance
input) is considered.

With these numerical values, conditions (3) and (4) are fulfilled
and the existence of an UIO is guaranteed.

Condition (4)is satisfied, since CcD; = — x1; # 0,and the number
of outputs and unknown inputs is the same m=q=1.

The fulfilment of condition (3) can be checked from the results
of the transformation (5) applied to the augmented system.

The unknown input (the dilution rate) is considered to be piece-
wise constant (slowly varying), so the exosystem is chosen as in Eq.
(7). When the augmented system is constructed and the decoupling
transformation is applied, the following dimensions of the subsys-
tems are obtained {n1 = 4, ny = 0, n3 = 0, Nng = 0, ns=0}.
In this case, only one subsystem exists, i.e., subsystem 1, and it
has order 4. This means that the inclusion of the exosystem implies
that in the new coordinates the whole system is decoupled from the
input, and according to property (iv), the couple (C;, A11) is observ-
able and therefore all 4 poles can be assigned. From another point
of view since the augmented system has no transmission zeros,
according to Lemma 4 the observer is of assignable dynamics (in
the context of Lemma 4 partition G, does not exist since n, =0).

The selected positions for the observer poles are
[-1,-1290, -5, -1.5], which includes two poles in similar
positions as the transmissions zeros of the original system.
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Fig. 1. Simulation of Droop model: evolution of biovolume (measured state vari-
able).

The extended-order observer is then

& -13x10® 1 0 0] [q
L | -97x100 0 1 0 I
|~ | -18.07x103 0 0 1| |¢&3
s —9.7x103 0 0 0] | ¢4
0 0
L0, |22
1.16 | ¥ 7 [ 5.32
0 3.07
21 3.15 x 103 0 0 0 &
Z| [-235x10° 1.8x10° 0 -1.6 &
23] 7| 1.29x106 -1x103 08 O &
K 0 0 0 -095]| |¢
0 0
0 0
+ 0 Eu + 0 y
0 0

where the last equation of the observer corresponds to the estima-
tion of the unknown input.

If no exosystem is considered, an unknown input observer can
be designed as well. However, it is of non-assignable dynamics and
a derivative of the output is needed to estimate the unknown input,
which most of the times is not recommended.

4.2.2. QUIO for Droop model: results and discussion

Numerical simulations are first performed to test the observer.
Simulation starts with an actual dilution rate linearly increasing
with a slope of 0.02 day—2 and, after 20 days, the dilution rate expe-
riences three step changes of amplitude 0.2 day~!, at day 20, 26, and
32, respectively. Biovolume, shown in Fig. 1, is measured.

The results are shown in Fig. 2, e.g., the evolution of the estima-
tion error of the two unmeasured variables as well as the estimation
of the unknown input. The estimation converges well, showing that
not only a stepwise dilution rate, but also a slowly varying dilution
rate can be estimated satisfactorily.

The QUIO is now applied to experimental data collected at
the Ocenanographic Laboratory of Villefranche-sur-Mer, France [2].
The measured biovolume is shown in Fig. 3. The estimation results
for the unmeasured variables are shown in Fig. 4. Data points in
these figures are not used in the estimation procedure, but for
validation purposes only.

45

_
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)]

o &
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I . : ‘ :
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Fig. 2. Simulation of Droop model and application of QUIO. Top: estimation error
on S; middle: estimation error on Q; bottom: comparison of dilution rates, real (red
line) and estimated (black line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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Fig. 3. Experimental evaluation of QUIO based on Droop model: evolution of bio-
volume (solid lines: estimated variables. Stars: measurements).
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Fig. 4. Experimental evaluation of QUIO based on Droop model (solid lines: esti-
mated variables. Stars: measurements).
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As in simulation, the estimation of D is quite satisfactory, with
a mean quadratic error of 0.05 day 2.

4.2.3. QUIO for model with light intensity effect

For model (15), the numerical values of the system parameters
are a=24.1day"!, B=0.345 day~!, Kc=2.8512 x 106 wE/m?/day,
K;=18.0144 x 108 wE/m?/day, = K;=6.59,  Ks=0.43 wmolN/l,
A=0.054(day~!), pm =0.5 wmol N/mol C/day.

Considering the following inputs uj =D;=0.4day !,
Uy =Sin=10molN/l, w; =1, = 1.3824 x 105, uE/m2/day the
operation point is

x11 27.1365

X = XoL _ 7.1726
X3L 2.652
Xa1 0.1753

The linearized system at this point is

~0.4539 1.7176 0 0

| -01969 0 2.0149 0

*= 103417 -0.399 —-2.4149 159226 |*
~0.1448 0 0 ~16.3225
~27.1365 0O 0.8277
71726 0 0.2328 s
—2.652 0 ut | _go3as | X107@
9.8247  0.3999 0

gy=[1 0 0 O]e

Note that the measured variable in the linearized model is &,
and the unknown input is .

In this case, small variations in uq; (dilution rate) are considered,
but uy; (S;y) is constant.

With these numerical values, conditions (3) and (4) are fulfilled
and the existence of an UIO is also guaranteed in this case.

Condition (4) is satisfied even in the general case, since C¢D; =
(aK; /(Kp + WL)2 )21 # 0, and the number of outputs and unknown
inputs is the same m=q=1.

The fulfillment of condition (3) can be also checked from the
results of the transformation (5) applied to the augmented system:

In this application, the prior information about the unknown
input can be introduced in the design of the observer by an exosys-
tem selected as in Eq. (8). This is an oscillatory system with a
fundamental frequency w, which is assumed to be w =1 cycle/day,
i.e., it describes in a rough way the periodic evolution of the light
during a complete day (i.e. day and night).

With the introduction of the exosystem the decoupling trans-
formation of the augmented system has the following dimensions
{ni=6, ny;=0, n3=0, ng4=0, ns=0]}.Thatis, with a sim-
ilar argument as before an observer can be designed with the first
subsystem and it has completely assignable dynamics.
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Fig. 5. Simulation of model with light intensity effect: evolution of the particulate
carbon (measured variable).
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Fig. 6. Simulation of model with light intensity effect and evaluation of QUIO: evo-
lution of estimation errors.

where the last equation of the observer corresponds again to the
estimation of the unknown input.

4.2.4. QUIO for model with light intensity effect: results and
discussion

The selected positions for the observe poles are In the reference simulation (which mimics reality), light is
(-1, -2, -3, -14, -38, -10] represented by a fundamental of pulsation w=1cycle/day, and
The extended-order observer is then
él B —-67.9 10 0 00O & 0.0106 0 -0.019
) —1435 01000 I®) 0.2026 0 -0.524
&3 | -1.232x104* 0 0 1 0 0] |3 09348 0 —4.484
ta| = | -438x10* 0 0 0 1 0| |¢s| "t [81746 —0.008 | %" | 16309 | &
é’s -6.483x10* 0 0 0 0 1 s 20.452 0 —24.662
é-ﬁ | -3.192x10* 0 0 0 0 O I3 6.9276 -0.338 —-12.296
:2 ~ [-2.57x103 0 0 0 0 0 e 0 0
21 2.49 x 104 —1.53 x 103 79.1 1 -2 0 & 0 0
2l _|-201x10° 1.23x10%  —742.1 39.5 0 -1 Sl loles lole
23 | 1.77x10° -1.08 x 10% 663.1 ~40.6 2.5 ~0.1 s ol “Tlol”
zf‘; 6.48 x 108 7.7x 106 —1.64x107 —-1.95x10° 4.16x10° 4.94x 103 | | 5 0 0
94 | 4.84%x107 1.03x10%8 1.22x106 -2.61x105 —3.1x10% 6.62x10%] | ¢
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Fig. 7. Simulation of model with light intensity effect and evaluation of QUIO: esti-
mated input.
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Fig. 8. Simulation of model with light intensity effect and evaluation of QUIO: esti-
mated input (detail).

amplitude between 0 and 2.7648 x 106 wE/m?2/day. In addition, two
harmonics are present, the third and the seventh ones, with an
amplitude of 10% of the fundamental.

On the other hand, in the tests, the actual value of the dilution
rate D(t) is 10% larger than the value at the steady state point.

The particulate carbon is the measured variable and is shown in
Fig. 5 and will be used by both designed observers.

In Fig. 6 (state estimation error) and Fig. 7 (input) the estimation
results are shown. The estimation errors tend to zero in spite of the
changes in the light intensity. The value of the light intensity used
in the linearization is the half of the peak-to-peak amplitude of the
sinusoidal, so that the maximal variation is 100% in both directions.

In Fig. 8 a detailed part of Fig. 7 is presented in order to compare
the three sinusoidal signals: (1) the fundamental, which is con-
sidered in the design; (2) the actual light intensity (fundamental
sinusoid plus harmonics); and (3) the estimated unknown input.

The estimated input is close to the fundamental sinusoid.

5. Conclusions

The concept of quasi-unknown inputs, i.e., inputs for which only
a few qualitative features would be known a priori, and the intro-
duction of an exosystem defining these features, lead to the design
of quasi-unknown input observers, which allow the simultaneous
estimation of unmeasured state variables, and disturbances acting
on the system. QUIOs are designed for two representative applica-
tion examples related to the culture of microalgae, and satisfactory
results are obtained in simulation and with experimental data.
Future work entails new applications, e.g. estimation of influent
concentrations in anaerobic digestion.
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