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a  b  s  t  r  a  c  t

Biological  and  environmental  systems  are  often  influenced  by  unknown  inputs  or  disturbances,  which
makes  monitoring  or state  estimation  more  delicate.  In this  study,  the  simultaneous  estimation  of  unmea-
sured  state  variables  and  partly  unknown  inputs  is  considered.  Only  qualitative  prior  information  on  these
inputs  is used  in the design  procedure,  leading  to the  concept  of  quasi-unknown  input  observers  (QUIO).
These  software  sensors  are  applied  to the  estimation  of  concentrations,  flow  rates  and  light  intensity  in
eywords:
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ioprocess

phytoplanktonic  cultures  in  the  chemostat.  Implementation  and  numerical  tests  are discussed,  based  on
simulation  and  experimental  data.

© 2011 Elsevier B.V. All rights reserved.
nvironmental system
icroalgae

. Introduction

State estimation in bioprocesses, by so-called software sensors,
s particularly important for monitoring and control purposes,
s hardware sensors might be expensive (high acquisition and
aintenance costs), are not always available for the specific mea-

urement under consideration (due to the difficulty in designing a
easurement principle offering accurate and reliable on-line data)

nd have stringent operating conditions (calibration, processing
ime, sample destruction in some cases).

Software sensors blend the predictive information of a dynamic
rocess model with the corrective information of available hard-
are sensors [5,11,9]. However, bioprocess models are usually
ncertain due to the inherent difficulty of inferring the model
tructure (reaction scheme and kinetic laws) and estimating the
odel parameters (yield coefficients and kinetic parameters) from

xperimental data. In addition, there exist either disturbances or
ncertain input variables (both of them considered as unknown

nputs) that affect the performance of the estimators.

Regarding all these possible adverse scenarios, it is therefore

equired to adopt a robust estimation approach. There are several
ublished results that offer solutions to this problem, for instance,
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asymptotic observers [1],  interval observers [12,15], bundle inter-
val observers [4,16],  unknown input observers [7,8,14,18,21,25,26].

In addition to the on-line reconstruction of key-component con-
centrations, it can also be important to estimate unknown inputs
or disturbances acting on the system. It is particularly relevant in
environmental processes, such as biological wastewater treatment
systems where the influent flow rate and concentrations are often
only partially measured, or anaerobic digestion processes where
influent concentrations are also partly known. It is also the case in
natural ecosystems (such as lakes, rivers, oceans) where external
influencing factors are difficult or even impossible to measure.

Unknown input observers (UIO) estimate the state variables of
a system robustly with respect to the disturbances or unknown
inputs that affect the system. For example, the famous asymptotic
observer proposed by Bastin and Dochain in the 90s [1],  and which
has found so many applications in bioprocess state estimation prob-
lems, can be viewed as a specific UIO. The main idea behind this
observer is indeed to eliminate the uncertain kinetic model through
a state transformation.

The study of UIOs for linear systems is vast [7,8,14,18,26] and
several of the proposed design methods take a similar way: find-
ing one (or more) transformations that decouple the effect of the
unknown input from a part of the system. However, the exis-
tence of such transformations implies severe conditions for the

existence of UIOs.

These strong requirements are due to the fact that robustness
to any disturbance is required, since no prior information on the
disturbance is assumed. However, there are cases where some
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ualitative features of the unknown input are indeed known a
riori (for example one could know that the disturbance takes the
orm of a step, but its amplitude remains unknown). In this case,
he disturbance is considered as a “quasi-unknown input” and in
19], a design procedure has been proposed, where the known fea-
ures of the input are defined through an exosystem.  The benefits of
his approach is either to weaken the existence conditions of UIOs
r to give more degrees of freedom in the design. The resulting
bserver is called quasi-unknown input observer (QUIO).

Whereas QUIO have been mostly applied to state estimation and
ault detection [22], the focus of the present study is on the simul-
aneous estimation of unmeasured states and unknown inputs,
hrough a modification of the existence conditions given in [19].
urther, QUIO are evaluated in the framework of monitoring cul-
ures of microalgae operated in chemostat mode. In order to show
he practical value of this approach, it is applied to two different
ase studies, which are investigated both in simulation an with
xperimental data.

The paper is organized in three main sections. Unknown input
bservers are introduced first, together with their existence con-
itions, in Section 2. A decoupling transformation as well as the
oncept of quasi-unknown inputs are then defined. Finally, the
UIO design methodology is developed. In Section 3, the structure
f a dynamic model of microalgae culture is presented, with two
articular case studies. Section 4 implements these observers, and
valuate their performance using both numerical simulations and
eal experimental data. Finally, Section 5 draws some conclusions.

. Unknown input observers

Consider the following linear system

ẋ = Ax + Bu + Dw, x(0) = x0

y = Cx,

z = Gx

(1)

here x ∈ R
n is the state vector, u ∈ R

p is the known (control) input
ector, y ∈ R

m is the output (measurement) vector, w ∈ R
q is the

nknown input vector and z ∈ R
s is a linear transformation of the

tate to be estimated.
An unknown input observer is a dynamical system

�̇ = Ao� + Bo[uT , yT ]
T
, �(0) = �0

ẑ = Co� + Do[uT , yT , ẏT , ÿT , . . .]
T

(2)

hich produces an estimation of the states of (1) based on the
nformation on measured variables (u and y) and possibly on the
erivatives of the output, despite the effect of the unknown input
, that is, limt→∞(z − ẑ) = 0 ∀w.

The state vector of the observer is � ∈ R
no and according to its

imension the following classification can be made: (a) if no < n the
bserver is said to be of reduced order; (b) if no = n is said to be of
ull order; (c) if no > n is said to be of extended order.

.1. Existence conditions

There are several approaches to the theory and design of UIOs
see for example Refs. [6,8,13,19,26]),  however, there are two nec-
ssary and sufficient conditions for the existence of such observers.
hey are presented in the following lemma.

emma  1. [13] Consider the linear system (1)
There exists a unknown input state observer (G = I ) for this system
f and only if

k

[
sI − A −D

C 0

]
= n + q, ∀s ∈ C

+
0 (3)
Engineering Journal 175 (2011) 39– 48

rk(CD)  = rk(D) = q (4)

Condition (3) can be understood as a minimum phase condition,
since the transmission zeros of the plant cannot be in the right-half
closed complex plane (C+

0 ), i.e., the matrix in Eq. (3) can be rank
deficient for s-values in the left-half complex plane only. This latter
interpretation of one of the existence conditions suggests the idea
that the system is going to be “inverted”, and in order to obtain a
“stable” inverted system, the zeros must be in appropriate places.

On the other hand, condition (4) can be understood as a con-
dition of relative degree one for square systems (same number of
inputs and outputs). However, from a more general point of view,
it implies that the number of outputs (measurements) has to be
greater or at least equal to the number of unknown inputs. This is
an important and general condition in the framework of UIOs.

2.2. Decoupling transformation

One of the approaches to study UIOs [18] expresses the existence
conditions as well as the design of the UIO using a set of transfor-
mations that decouple the effect of the unknown inputs and bring
the system to a special form. It is formally presented in the next
lemma.

Lemma  2. [23,18] Without loss of generality assume that rk(D) = q,
rk(C) = m,  rk(G) = s. There exists state x → Px , output y → Qy and input
u → Ru transformations such that in the new coordinates, system (1)
takes the following form

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

A11 0 0 0 A15C2

A21C1 A22 0 0 A25C2

A31C1 0 A33 0 A35C2

A41C1 D2A42 D2A43 A44 A45C2

D1A51 D1A52 D1A53 D1A54 A55

⎤
⎥⎥⎥⎥⎥⎦ x + Bu

+

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 D2

D1 0

⎤
⎥⎥⎥⎥⎥⎦w

y =
[

C1 0 0 0 0

0 0 0 0 C2

]
x

z =
[

G1 G2 G3 G4 G5
]

x

(5)

and satisfies properties (i)–(vi). Denote ni = dim (Aii), i = 1, . . .,  5,
qj = rk(Dj), mj = rk(Cj), j = 1, 2.

(i) Matrices C1 , C2 , D1 and D2 are full rank.
(ii) Transmission zeros of the system are �(A22) ∪ �(A33).
iii) �(A22) ⊂ C

− and �(A33) ⊂ C
+
0 .

(iv) The couples (C1, A11) and (C2, A55) are observable. The couples
(A44, D2) and (A55, D1) are controllable.

(v) q1 = rk(D1) = rk(C2) = m2.
(vi) For every K the couple (C2, A55 − D1K) is observable, i.e. system

(C2, A55, D1) is perfectly observable. This implies that

rank

[
sI − A55 −D1

C2 0

]
= n5 + q1, ∀s ∈ C.
A further important consequence of this property is that the
state x5 can be reconstructed from the output y2 = C2x5 and a
finite number of its derivatives, without information on the input,
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i.e. there exist an integer ı ≥ 0 and constant matrices Mi such
that

x5 =
ı∑

i=0

Miy
(i)
2

.3. Quasi-unknown inputs

In some situations, as discussed in Ref. [19], it may  occur that
he disturbance that affects a system is not completely unknown,
.e., some qualitative features are known a priori, such as its shape
r frequency, and thus it is called a “quasi-unknown input”.

The possibility to use these known features has important con-
equences:

The existence conditions of an UIO are stringent and the knowl-
edge of some features of the disturbance signals can be used
to relax them. In some specific estimation problems, robustness
with respect to all disturbances is not required, but only with
respect to some of them. It is then more likely to prove the exis-
tence of an observer and to design it.
The introduction of some information about the disturbances
can also give extra degrees of freedom in the assignation of the
observer dynamics, as will be shown in the applications.

In this study, where cultures of phytoplankton in the chemostat
ill be considered, the unknown inputs will be related to flow rates

r concentrations that could vary stepwise, or to the light intensity
hat could vary periodically.

The formal way to introduce the information about the distur-
ance is by defining an exosystem

ẋe = Aexe + Dev, xe(0) = xe0
w = Cexe,
ze = Gexe

(6)

here xe ∈ R
ne is the state vector, v ∈ R

qe is an input vector and
e ∈ R

se is a linear combination of the states of the exosystem. Matri-
es Ae, Ce, De and Ge are constant of appropriate dimensions.

In the context of this study, the unknown input w in Eq. (6) is
roduced by an exosystem without inputs, that is De = 0. To estimate
his unknown input, Ge = Ce.

the exosystem that corresponds to a step function, is defined by
the following selection of matrices:

Ae = 0, De = 0, Ce = 1. (7)

The amplitude of the step is not part of the information included
in the exosystem. The amplitude could be expressed in the initial
conditions xe0.
the exosystem corresponding to a sinusoidal function is defined
with

Ae =
[

0 ω
−ω 0

]
, De =

[
0
0

]
, Ce =

[
1 0

]
. (8)

As can be seen, the only information required about the sinu-
soidal is its frequency, not its amplitude. Again, the amplitude
could be included in the initial conditions.
.4. Quasi-unknown input observers

With the concept of an exosystem producing the unknown input
, an augmented system can be defined, which includes the plant

nd the exosystem
Engineering Journal 175 (2011) 39– 48 41

ẋa = Aaxa + Bau + Dav, xa(0) = xa0

y = Caxa,

z = Gaxa,

(9)

where

xT
a = [ xT , xT

e ], Aa =
[

A DCe

0 Ae

]
, Ba =

[
B

0

]

Da =
[

0

De

]
, Ca = [ C 0 ], Ga =

[
G 0

0 Ge

]
.

The design of an unknown input observer for the augmented
system (9) implies the design of a quasi-unknown input observer
for the plant (1),  that is, an observer design which considers a priori
knowledge of disturbances (quasi-unknown inputs) [19].

In order to design a QUIO the decoupling transformation will be
applied to the augmented system instead of the original system.
The following lemma  deals with the existence conditions for the
QUIO.

Lemma  3. [19] System (1) has a quasi-unknown input observer,
possibly improper, if and only if ∀s ∈ C

+
0

rk

[
sI − Aa −Da

Ca 0

]
= rk

⎡
⎢⎣

sI − Aa −Da

Ca 0

Ga 0

⎤
⎥⎦ . (10)

The observer will have assignable dynamics if and only if (10) is satis-
fied ∀s ∈ C.

If De = 0 then condition (10) is necessary and sufficient for the exis-
tence of a strictly proper observer. Its dynamics will be assignable if
the condition is satisfied ∀s ∈ C.

This condition can be simplified in some cases. For example, if
the complete augmented state vector is going to be estimated, i.e.,
the process state vector x and the extended state xe, which is related
to the unknown input according to Eq. (6),  then Ga = I since Ge = I.
Under this assumption, condition (10) can be written as follows

rk

[
sI − A −DCe

0 sI − Ae

C 0

]
= n + ne (11)

3. State and input estimation in phytoplanktonic cultures

The Quasi-unknown input observers are now applied to some
monitoring problems in phytoplanktonic cultures. First, dynamic
models are described, and a linearization is performed around an
operation point. Then the QUIOs are developed step-by-step and
tested in simulation and with real data.

3.1. Cultures of phytoplankton in the chemostat

The experimental setup considered in the following is the
chemostat, which is a bioreactor operated in continuous mode with
identical inlet and outlet flow rates, so as to keep a constant vol-
ume. The chemostat is a convenient device to control the growth
conditions of phytoplankton and to mimic  conditions encountered
in natural ecosystems like lakes for instance. The chemostat has
been used extensively to study the growth of populations of micro-
organisms, and competition or cooperation between them [24].
3.2. Dynamic models of phytoplanktonic cultures

One of the most popular models for representing the uptake and
growth of phytoplankton on a single substrate is Droop model [10],
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hich has received considerable attention since its publication in
968. In recent years, a few more detailed models have been pro-
osed, accounting for additional effects, among which the model
resented in Ref. [20] is taken as a case study in the present work.
his model takes account of the influence of light intensity. Both
odels can be represented in a generic way as

Ẋ(t) = −D(t)X(t) + �1(P, X)

Ṗ(t) = −D(t)P + ϕ1(S, X) + �2(P, X)

Ṡ(t) = D(t)[Sin(t) − S(t)] + ϕ2(S, X)

(12)

here X is a variable related to the biomass concentration in the
ioreactor, P is a variable related to the internal substrate pools
ithin the cells, S is related to the external substrate concentra-

ion, Sin is the inlet substrate concentration to the bioreactor (there
s no biomass inlet concentration so that Xin = 0), D(t) = Fin(t)/V
epresents the dilution rate of the continuous bioreactor with a
onstant volume V resulting from equal inlet and outlet flow rates
in(t) = Fout(t). Functions �1 and �2 are related to the growth rate
nd functions ϕ1 and ϕ2 represent terms that depend on the uptake
ate. In these controlled conditions, decay is not significant and
s not accounted for in the models. More details are given in the
ollowing.

.2.1. A simple uptake and growth model: Droop model
The specificity of Droop model [10], as compared to the classi-

al model of Monod [17], is that it uncouples inorganic substrate
ptake and growth thanks to an intracellular storage of nutrients,
s represented in the following set of equations:

Ẋ(t) = −D(t)X(t) + �̄
(

1 − KQ

Q (t)

)
X(t)

Q̇ (t) = �m
S(t)

S(t) + KS
− �̄

(
1 − KQ

Q (t)

)
Q (t)

Ṡ(t) = D(t)[Sin(t) − S(t)] − �m
S(t)

S(t) + KS
X(t)

(13)

In the previous equations, X denotes the biovolume in (�m3/l)
nd Q is the internal quota, defined as the quantity of nitrogen
er unit of biovolume. The biovolume is the volume of cells in

 given volume of culture medium, a quantity representing the
iomass concentration, which can be easily and rapidly measured.
(t) is the dilution rate, S is the substrate (inorganic nitrogen)
oncentration and Sin is the input substrate concentration. Func-
ion �(S) = �m(S(t)/(S(t) + KS)) is the uptake rate, and �(Q ) = �̄(1 −
KQ/Q (t))) is the growth rate. Parameters KS and �m represent

 half-saturation coefficient for the substrate and the maximum
ptake rate, respectively. Parameter �̄ is the theoretical maximum
rowth rate, obtained for an infinite internal quota and KQ is the
inimum internal quota allowing growth.
As a particular application, the culture of the chlorophyceae

unaliella tertiolecta is considered. As it is difficult to study the
volution of phytoplankton in the open sea, the growth analysis
s carried out in a photo-bioreactor operated in chemostat (equal
nflow and outflow resulting in a constant volume). A more com-
lete description of the experimental setup can be found in Ref.
2].

In this study, the objective is to design a software sensor recon-
tructing Q and S, based on Droop model and on-line measurements

f X, in a robust way with respect to unknown variations in the input

 = D(t).
For convenience, in a way similar to Ref. [2],  a simple change of

ariable is made in order to simplify the writing of the equations
Engineering Journal 175 (2011) 39– 48

and to avoid the presence of independent terms in the second
one,

x = T(X, Q, S) =

⎡
⎢⎢⎢⎣

�mX

si
Q

KQ
− 1

S

si

⎤
⎥⎥⎥⎦

The transformed system reads

ẋ = f (x) + g(x, u)w

y = x1 = h(x)
(14)

with

f (x) =

⎡
⎢⎢⎢⎢⎣

a2x1x2

x2 + 1

a3
x3

x3 + a1
− a2x2

− x1x3

x3 + a1

⎤
⎥⎥⎥⎥⎦ , g(x, u) =

⎡
⎢⎣

−x1

0

1 + u − x3

⎤
⎥⎦

where a1 = (KS/si) > 0, a2 = �̄ > 0, a3 = (�m/KQ) > 0.
As in Ref. [2],  Sin(t) = si(1 + u(t)), u(t) being the input forcing the

system (u(t) > − 1), and si the concentration in the influent without
input (u(t) = 0).

3.2.2. A more detailed model with light influence
In Ref. [20], a more detailed model, taking the influence of the

incident light intensity is developed, as

Ẋ(t) = −D(t)X(t) − �X(t) + a(I)L(t)

Ṅ(t) = −D(t)N(t) + �m
S(t)

S(t) + KS
X(t) − 	(I)N(t)

L(t)
X(t)

+ ˇL(t)

L̇(t) = −D(t)L(t) + 	(I)N(t)
L(t)
X(t)

− ˇL(t)

Ṡ(t) = D(t)(Sin − S(t)) − �m
S(t)

S(t) + KS
X(t)

(15)

Variable X now represents the particulate carbon concentra-
tion (carbon biomass) and the generic variable P, representing
the internal pools, is now a 2-vector with: P(1) = N, the internal
nitrogen concentration and P(2) = L the chlorophyllian nitrogen
concentration. The total particulate nitrogen can be computed as
N + L.

Functions �i, i = 1, 2 which relate to the growth rate, are affected
by the light intensity I, i.e., �1 = �1(N, L, X, I) and �2 = �2(N, L, X,
I).  ̌ is the coefficient of chlorophyll degradation, � is the factor of
respiration, and functions 	 and a describe the influence of the light
intensity I in the process

	(I) = ˛KLI(t)
KI + I(t)

KC

KC + I(t)
, a(I) = ˛I(t)

KI + I(t)

As a particular application, the culture of the cryptophyceae
Rhodomonas salina is considered. The state estimation objective is
to reconstruct L, N and S, using the culture model together with
on-line measurements of X. The dilution rate D and input concen-
tration Sin are known, whereas the light intensity I is the unknown
input, which is has to be simultaneously estimated.

In this case, the definition of x, u and w is⎡ ⎤ ⎡ ⎤

x = ⎢⎣

x1
x2
x3
x4

⎥⎦ = ⎢⎣
X
L
N
S

⎥⎦ , u =
[

u1
u2

]
=

[
D
Sin

]
, w = I
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Since this model contains the effect of the light intensity and it
s represented by nonlinear terms, the state-space representation
f the model can be written as follows

ẋ = f (x) + gu(x, u) + gw(x, w)

y = h(x) = x1

(16)

here

f (x) =

⎡
⎢⎢⎢⎢⎢⎣

−�x1

−ˇx2

�m
x4

x4 + KS
x1 + ˇx2

−�m
x4

x4 + KS
x1

⎤
⎥⎥⎥⎥⎥⎦ , gu(x, u) =

⎡
⎢⎣

−u1x1

−u1x2
−u1x3

u1(u2 − x4)

⎤
⎥⎦ ,

gw(x, w) =

⎡
⎢⎢⎢⎢⎢⎣

a(w)x2

	(w)x3
x2

x1

−	(w)x3
x2

x1

0

⎤
⎥⎥⎥⎥⎥⎦

In Droop model, whatever input is considered as unknown (Sin
r D), one can obtain a dynamic equation affine in this input. The
econd, more detailed, model is again affine in the dilution rate or
nput concentration, whereas it is not affine with respect to the
ight intensity.

One possible solution for this structural problem would be to
irectly consider functions a(I) and 	(I) as unknown terms. How-
ver, the existence conditions of the QUIO then requires at least
wo independent measurements.

.2.3. Model linearization
The considered bioprocess models are nonlinear, but as the cul-

ures are operated in chemostat, i.e., around a stationary point, it is
ppealing to avoid the use of complex nonlinear state estimation
echniques, and to apply the available linear QUIO framework. The
ext step is therefore a model linearization.

For Droop model (13), considering the steady-state point

 = xL =
[

x1L

x2L

x3L

]
, d = dL, u = uL

he linearized system is

ε̇x =
[

	11 	12 0
0 	22 	23

	31 0 	33

]
εx +

[
0
0

	34

]
εu +

[
	15
0

	35

]
ı

ε̇x = Aεεx + Bεεu + Dεı

(17)

L = [ 1 0 0 ]εx = Cεεx

here εx = x − xL, εu = u − uL, ı = d − dL, and

	11 = a2x2L

x2L + 1
− dL 	31 = − x3L

x3L + a1

	12 = a2
x1L

(x2L + 1)2
	33 = − a1x1L

(x3L + a1)2
− dL

	15 = −x1L 	34 = dL

	22 = −a2 	35 = 1 + uL − x3L
	23 = a1a3

(x3L + a1)2

For the model with light influence (15), consider the steady-
tate point
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x = xL =

⎡
⎢⎣

x1L

x2L

x3L

x4L

⎤
⎥⎦ , uL =

[
u1L

u2L

]
, w = wL

which can be computed in the following order by:

x4L = KSu1L[k(wL)(u1L + �) + (u1L + ˇ)]
�m	(wL) − u1L[k(wL)(u1L + �) + (u1L + ˇ)]

x3L = (u2L − x4L)(u1L + ˇ)
k(wL)(u1L + �) + (u1L + ˇ)

x1L = 	(wL)(u2L − x4L)
k(wL)(u1L + �) + (u1L + ˇ)

x2L = k(wL)(u2L − x4L)(u1L + �)
k(wL)(u1L + �) + (u1L + ˇ)

where

k(w) = 	(w)
a(w)

The linearized system is

ε̇x =

⎡
⎢⎣

	11 	12 0 0
	21 	22 	23 0
	31 	32 	33 	34
	41 0 0 	44

⎤
⎥⎦ εx +

⎡
⎢⎣

�11 0
�21 0
�31 0
�41 �42

⎤
⎥⎦ εu

+

⎡
⎢⎣

�11
�21
�31
0

⎤
⎥⎦


ε̇x = Aεεx + Bεεu + Dε


(18)

yL = [ 1 0 0 0 ]εx = Cεεx

where εx = x − xL, εu = u − uL, 
 = w − wL , and

�11 = −x1L

�21 = −x2L

�31 = −x3L

�41 = u2L − x4L

�42 = u1L

�11 = ˛KI

(KI + wL)2
x2L

�21 = ˛KLKC (KIKC − w2
L )

((KI + wL)(KC + wL))2

x3Lx2L

x1L

�31 = − ˛KLKC (KIKC − w2
L )

((KI + wL)(KC + wL))2

x3Lx2L

x1L

	11 = −� − u1L

	12 = ˛wL

KI + wL

	21 = − ˛KLKCwL

(KI + wL)(KC + wL)
x3Lx2L

x2
1L

	22 = −  ̌ − u1L + ˛KLKCwL

(KI + wL)(KC + wL)
x3L

x1L

	23 = ˛KLKCwL

(KI + wL)(KC + wL)
x2L

x1L

	31 = �m
x4L

x4L + KS
+ ˛KLKCwL

(KI + wL)(KC + wL)
x3Lx2L

x2
1L

	32 =  ̌ − ˛KLKCwL

(KI + wL)(KC + wL)
x3L

x1L

	33 = −u1L − ˛KLKCwL

(KI + wL)(KC + wL)
x2L

x1L

	34 = �m
x1LKS

(x4L + KS)2
	41 = − �mx4L

x4L + KS

	44 = − �mx1LKS

(x4L + KS)2
− u1L
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. Design and implementation of the observers

First, the existence conditions are checked for both estimation
roblems. Then, the design procedure is applied and numerical
esults are presented and discussed.

.1. Existence conditions

For Droop model (13), the complete state vector is to be esti-
ated (G = I) as well as the unknown input (Ge = 1). The existence

ondition for the augmented system (11) is fulfilled, since

k

[
sI − Aε −DεCe

0 sI − Ae

C 0

]
= rk

⎡
⎢⎢⎣

s − 	11 −	12 0 −	15
0 s  − 	22 −	23 0
−	31 0 s  − 	33 −	35
0 0 0 s
1 0 0 0

⎤
⎥⎥⎦

an be proved to be 4 for all s. This also means that the augmented
ystem has no zero.

For the more detailed model (15), the unknown input is pro-
uced by a second order exosystem, so that Ge = [1 0] and Ga /= I.
owever, a condition similar to Eq. (11) can be given

k

⎡
⎢⎣

sI − A −DCe

0 sI − Ae

C 0
0 Ge

⎤
⎥⎦ = n + ne (19)

The existence condition for the augmented system (19) is ful-
lled, since

rk

⎡
⎢⎣

sI − Aε −DεCe

0 sI − Ae

C 0
0 Ge

⎤
⎥⎦

= rk

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s − 	11 −	12 0 0 −�11 0
−	21 s − 	22 −	23 0 −�21 0
−	31 −	32 s − 	33 	34 −�31 0
−	41 0 0 s − 	44 0 0
0 0 0 0 s −ω
0 0 0 0 ω s
1 0 0 0 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

an be proved to be 6 for all s. This also means that the augmented
ystem has no zero.

.2. Observer design, implementation and tests

A constructive approach using the decomposition of Lemma  2
an now be introduced.

emma  4. [18] Consider system (1) expressed in the special form (5).
here exists an UIO (possibly improper) if and only if

3 = 0, and G4 = 0 (20)

There exists an UIO with assignable dynamics if and only if

2 = 0, G3 = 0, and G4 = 0 (21)

urthermore, if (20) or (21) are satisfied:
. There exists a proper observer if and only if

G5 = MC2, for some matrix M.  (22)

. There exists a strictly proper observer if and only if G5 = 0.
Engineering Journal 175 (2011) 39– 48

An observer (possibly of reduced order) with the mentioned prop-
erties is given by

�̇1 = A11�1 + B1u + A15y2 + H11
(

C1�1 − y1
)

�̇2 = A22�2 + B2u + A25y2 + A21y1

ẑ = G1�1 + G2�2 +

⎧⎪⎨
⎪⎩

G5

ı∑
i=0

Miy
(i)
2

My2, if (22)

where H11 is selected such that (A11 + H11C1) is Hurwitz, and Mi is as
in Lemma 2 , part (vi). If (21) is satisfied, then the corresponding part
of �2 is extracted from the observer.

In the following sections we present the application of the
design procedure to both models of phytoplankton cultures.

4.2.1. QUIO for Droop model
For Droop model (13) the numerical values of the system param-

eters are �m = 9.40 �mol/mm3/day, KS = 0.105 �mol/l, �̄ = 2 1/day,
kQ = 1.8 �mol/mm3, Sin = 100 �mol/l, si = 100.

Considering the following steady-state point in the orig-
inal coordinates SL = 0.0479 �mol/l, XL = 30.5409 mm3/l),
QL = 3.2727 �mol/mm3, dL = 0.9 1/day the steady-state point in
the new coordinates is:

xL =
[

x1L

x2L

x3L

]
=

[
2.8708
0.8182
0.0005

]

The linearized system at this point is

ε̇x =
[

0 1.734 0
0 −2 2345

−0.313 0 −1290

]
εx +

[
0
0

0.9

]
εu +

[ −2.87
0

0.999

]
ı

y = [ 1 0 0 ]εx = εx1

Note that the measured variable in the linearized model is εx1

and the unknown input is ı.
In this study, no forcing input is considered, i.e., u = 0 as well as

uL = 0, and only the effect of an unknown dilution rate (disturbance
input) is considered.

With these numerical values, conditions (3) and (4) are fulfilled
and the existence of an UIO is guaranteed.

Condition (4) is satisfied, since CεDε = − x1L /= 0, and the number
of outputs and unknown inputs is the same m = q = 1.

The fulfilment of condition (3) can be checked from the results
of the transformation (5) applied to the augmented system.

The unknown input (the dilution rate) is considered to be piece-
wise constant (slowly varying), so the exosystem is chosen as in Eq.
(7). When the augmented system is constructed and the decoupling
transformation is applied, the following dimensions of the subsys-
tems are obtained { n1 = 4, n2 = 0, n3 = 0, n4 = 0, n5 = 0 }.
In this case, only one subsystem exists, i.e., subsystem 1, and it
has order 4. This means that the inclusion of the exosystem implies
that in the new coordinates the whole system is decoupled from the
input, and according to property (iv), the couple (C1, A11) is observ-
able and therefore all 4 poles can be assigned. From another point
of view since the augmented system has no transmission zeros,
according to Lemma  4 the observer is of assignable dynamics (in

the context of Lemma  4 partition G2 does not exist since n2 = 0).

The selected positions for the observer poles are
[ −1, −1290, −5, −1.5 ], which includes two poles in similar
positions as the transmissions zeros of the original system.
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Fig. 2. Simulation of Droop model and application of QUIO. Top: estimation error
on S; middle: estimation error on Q; bottom: comparison of dilution rates, real (red
line) and estimated (black line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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Fig. 3. Experimental evaluation of QUIO based on Droop model: evolution of bio-
volume (solid lines: estimated variables. Stars: measurements).
ig. 1. Simulation of Droop model: evolution of biovolume (measured state vari-
ble).

The extended-order observer is then⎡
⎢⎣

�̇1

�̇2

�̇3

�̇4

⎤
⎥⎦ =

⎡
⎢⎣

−1.3 × 103 1 0 0
−9.7 × 103 0 1 0

−18.07 × 103 0 0 1
−9.7 × 103 0 0 0

⎤
⎥⎦

⎡
⎢⎣

�1
�2
�3
�4

⎤
⎥⎦

+

⎡
⎢⎣

0
0

1.16
0

⎤
⎥⎦ εu +

⎡
⎢⎣

0
2.25
5.32
3.07

⎤
⎥⎦ y

⎡
⎢⎣

ẑ1
ẑ2
ẑ3

ı̂

⎤
⎥⎦ =

⎡
⎢⎣

3.15 × 103 0 0 0
−2.35 × 106 1.8 × 103 0 −1.6
1.29 × 106 −1 × 103 0.8 0

0 0 0 −0.95

⎤
⎥⎦

⎡
⎢⎣

�1
�2
�3
�4

⎤
⎥⎦

+

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ εu +

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦ y

here the last equation of the observer corresponds to the estima-
ion of the unknown input.

If no exosystem is considered, an unknown input observer can
e designed as well. However, it is of non-assignable dynamics and

 derivative of the output is needed to estimate the unknown input,
hich most of the times is not recommended.

.2.2. QUIO for Droop model: results and discussion
Numerical simulations are first performed to test the observer.

imulation starts with an actual dilution rate linearly increasing
ith a slope of 0.02 day−2 and, after 20 days, the dilution rate expe-

iences three step changes of amplitude 0.2 day−1, at day 20, 26, and
2, respectively. Biovolume, shown in Fig. 1, is measured.

The results are shown in Fig. 2, e.g., the evolution of the estima-
ion error of the two unmeasured variables as well as the estimation
f the unknown input. The estimation converges well, showing that
ot only a stepwise dilution rate, but also a slowly varying dilution
ate can be estimated satisfactorily.

The QUIO is now applied to experimental data collected at
he Ocenanographic Laboratory of Villefranche-sur-Mer, France [2].

he measured biovolume is shown in Fig. 3. The estimation results
or the unmeasured variables are shown in Fig. 4. Data points in
hese figures are not used in the estimation procedure, but for
alidation purposes only.

Fig. 4. Experimental evaluation of QUIO based on Droop model (solid lines: esti-
mated variables. Stars: measurements).
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As in simulation, the estimation of D is quite satisfactory, with
 mean quadratic error of 0.05 day−2.

.2.3. QUIO for model with light intensity effect
For model (15), the numerical values of the system parameters

re  ̨ = 24.1 day−1,  ̌ = 0.345 day−1, KC = 2.8512 × 106 �E/m2/day,
I = 18.0144 × 106 �E/m2/day, KL = 6.59, KS = 0.43 �mol  N/l,

 = 0.054 (day−1), �m = 0.5 �mol  N/�mol  C/day.
Considering the following inputs u1L = DL = 0.4 day−1,

2L = Sin = 10 �mol  N/l, wL = IL = 1.3824 × 106,�E/m2/day the
peration point is

L =

⎡
⎢⎣

x1L

x2L

x3L

x4L

⎤
⎥⎦ =

⎡
⎢⎣

27.1365
7.1726
2.652

0.1753

⎤
⎥⎦

The linearized system at this point is

ε̇x =

⎡
⎢⎣

−0.4539 1.7176 0 0
−0.1969 0 2.0149 0
0.3417 −0.399 −2.4149 15.9226

−0.1448 0 0 −16.3225

⎤
⎥⎦ εx

+

⎡
⎢⎣

−27.1365 0
−7.1726 0
−2.652 0
9.8247 0.3999

⎤
⎥⎦ εu +

⎡
⎢⎣

0.8277
0.2328

−0.2328
0

⎤
⎥⎦ × 10−5


εy = [ 1 0 0 0 ]εx

Note that the measured variable in the linearized model is εx1

nd the unknown input is 
.
In this case, small variations in u1L (dilution rate) are considered,

ut u2L (Sin) is constant.
With these numerical values, conditions (3) and (4) are fulfilled

nd the existence of an UIO is also guaranteed in this case.
Condition (4) is satisfied even in the general case, since CεDε =

˛KI/(KI + wL)2)x2L /= 0, and the number of outputs and unknown
nputs is the same m = q = 1.

The fulfillment of condition (3) can be also checked from the
esults of the transformation (5) applied to the augmented system:

In this application, the prior information about the unknown
nput can be introduced in the design of the observer by an exosys-
em selected as in Eq. (8).  This is an oscillatory system with a
undamental frequency ω, which is assumed to be ω = 1 cycle/day,
.e., it describes in a rough way the periodic evolution of the light
uring a complete day (i.e. day and night).

With the introduction of the exosystem the decoupling trans-
ormation of the augmented system has the following dimensions
n1 = 6, n2 = 0, n3 = 0, n4 = 0, n5 = 0 }. That is, with a sim-
lar argument as before an observer can be designed with the first
ubsystem and it has completely assignable dynamics.

The selected positions for the observe poles are
−1, −2, −3, −14, −38, −10 ].

The extended-order observer is then⎡
⎢⎢⎢⎢⎢⎣

�̇1

�̇2

�̇3

�̇4

�̇5

�̇6

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−67.9 1 0 0 0 0
−1435 0 1 0 0 0

−1.232 × 104 0 0 1 0 0
−4.386 × 104 0 0 0 1 0
−6.483 × 104 0 0 0 0 1
−3.192 × 104 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

�1
�2
�3
�4
�5
�6

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

0.0106 

0.2026
0.9348 

8.1746 −
20.452 

6.9276 −⎡
x̂1
x̂2

⎤ ⎡
⎢ −2.57 × 103 0 0 0 

2.49 × 104 −1.53 × 103 79.1 1 
⎢⎢⎣ x̂3
x̂4

̂

⎥⎥⎦ =
⎢⎢⎢⎣

−2.01 × 105 1.23 × 104 −742.1 39.5 

1.77 × 105 −1.08 × 104 663.1 −40.6 

6.48 × 108 7.7 × 106 −1.64 × 107 −1.95 × 105 4
−4.84 × 107 1.03 × 108 1.22 × 106 −2.61 × 106 −
8

8

⎤
⎥⎥⎥⎥⎦ εu +

⎡
⎢⎢⎢⎢⎣

−0.019
−0.524
−4.484
−16.309
−24.662
−12.296

⎤
⎥⎥⎥⎥⎦ εy

0 0
⎤⎡

�1
⎤ ⎡ 0 ⎤ ⎡ 0 ⎤

Fig. 6. Simulation of model with light intensity effect and evaluation of QUIO: evo-
lution of estimation errors.

where the last equation of the observer corresponds again to the
estimation of the unknown input.

4.2.4. QUIO for model with light intensity effect: results and
discussion

In the reference simulation (which mimics reality), light is
represented by a fundamental of pulsation ω = 1 cycle/day, and
0 −1
2.5 −0.1

.16 × 105 4.94 × 103

3.1 × 104 6.62 × 104

⎥⎥⎥⎦
⎢⎢⎢⎣

�3
�4
�5
�6

⎥⎥⎥⎦ +
⎢⎢⎣ 0

0
0

⎥⎥⎦ εu +
⎢⎢⎣ 0

0
0

⎥⎥⎦ εy
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ig. 8. Simulation of model with light intensity effect and evaluation of QUIO: esti-
ated input (detail).

mplitude between 0 and 2.7648 × 106 �E/m2/day. In addition, two
armonics are present, the third and the seventh ones, with an
mplitude of 10% of the fundamental.

On the other hand, in the tests, the actual value of the dilution
ate D(t) is 10% larger than the value at the steady state point.

The particulate carbon is the measured variable and is shown in
ig. 5 and will be used by both designed observers.

In Fig. 6 (state estimation error) and Fig. 7 (input) the estimation
esults are shown. The estimation errors tend to zero in spite of the
hanges in the light intensity. The value of the light intensity used
n the linearization is the half of the peak-to-peak amplitude of the
inusoidal, so that the maximal variation is 100% in both directions.

In Fig. 8 a detailed part of Fig. 7 is presented in order to compare

he three sinusoidal signals: (1) the fundamental, which is con-
idered in the design; (2) the actual light intensity (fundamental
inusoid plus harmonics); and (3) the estimated unknown input.

The estimated input is close to the fundamental sinusoid.

[

[
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5. Conclusions

The concept of quasi-unknown inputs, i.e., inputs for which only
a few qualitative features would be known a priori, and the intro-
duction of an exosystem defining these features, lead to the design
of quasi-unknown input observers, which allow the simultaneous
estimation of unmeasured state variables, and disturbances acting
on the system. QUIOs are designed for two representative applica-
tion examples related to the culture of microalgae, and satisfactory
results are obtained in simulation and with experimental data.
Future work entails new applications, e.g. estimation of influent
concentrations in anaerobic digestion.
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