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The Rayleigh-Sommerfeld diffraction integral is employed to study the circular grating nonparaxial
diffraction properties of the radially polarized beams, and the analytical expression for the diffraction
electric field is derived. The analyses indicate that the properties of the nonparaxial diffraction field
strongly depend on the grating parameters and beam waist. When the radially polarized beam is
diffracted by the sub-wavelength grating, only the Oth diffraction ring is obtained, or the distinct higher
order diffraction rings will emerge. Compared with the paraxial diffraction, the nonparaxial diffraction
intensity field is weaker. But when the beam waist is larger than 34 the paraxial approximation is valid;
thus their distinction will be negligible. At last, it shows that in the radially polarized beams nonparaxial
diffraction field, the longitudinal component not only leads to stronger diffraction intensity than the
azimuthally polarized beams, but also makes the polarization degenerate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent decades, cylindrically vector polarized beams (CVPBs)
[1] have attracted considerable research interest, owing to the
peculiar spatial polarization distribution. Radially polarized beams
(RPBs) and azimuthally polarized beams (APBs) are a pair of the
most common orthotropic cylindrically vector polarized beams.
Some potential applications for RPBs have been demonstrated,
such as particle acceleration [2,3], metal cutting [4,5], photonic
crystal fabrication [6], near field microscopy [7-9], particle trap-
ping [10] and surface plasmon polariton excitation [11,12]. On the
other hand, APBs are also verified to be effective in drilling [13],
welding [5], split ring resonators excitation [14] and atom guiding
[15]. In microscopy and particle trapping, more tiny spots, ultra-
long depth of the focus (DOF) or three-dimensional optical chain
can be obtained by tight focusing the amplitude masks or phase
plates modulated RPBs or APBs for improving the resolution or
using in multi-small particles trapping [16-23]. In some of these
applications, the RPBs need to pass through the multi-annual belts
or grating-like optical diffraction elements. In addition, the multi-
ple rings of the circular grating diffraction field have been used in
alignment or metrology [24], which may also be the potential
application for the RPBs circular grating diffraction. Therefore, the
research of the nonparaxial and paraxial RPBs circular grating
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diffraction behaviors becomes significant in guiding these applica-
tions. To the best of our knowledge, few researches have focused
on nonparaxial RPBs circular aperture [25] or annular aperture
diffraction [26], and the circular grating diffraction properties of
RPBs or APBs have not been reported yet. In order to figure out
the nonparaxial and paraxial RPBs circular grating diffraction
behaviors, the Rayleigh-Sommerfeld integrals are resolved, and
the explicit diffraction electric fields are obtained in this paper.
The RPBs diffracting through circular aperture and propagating in
free space can be considered as two kinds of special conditions of
the circular grating diffraction.

2. Grating diffraction theory of vector polarized beams

As one of the widely used vector diffraction integration theories,
Rayleigh-Sommerfeld integral is demonstrated to be effective in the
vector beam propagating in free space and diffracting through the
circular aperture with the convergent resolutions. Here it is also
used to analyze the circular grating diffraction properties of RPBs,
and the diffraction scheme is shown in Fig. 1.

In the Cartesian coordinate system, the circular grating locates
at the plane in z=0. T, f and b are grating period, duty-cycle and
opaque annular belt width, respectively. An aperture with radius
a is in the center of the grating. The grating period number is
N(N=1,2,3,4,---). Therefore, the grating transmission function
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Observation Plane

Incident CVPBs

Circular Grating

Fig. 1. The scheme of circular grating diffraction for cylindrically vector
polarized beams.

can be written as
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Given the waist of incident CVPBs lies in plane z= 0, in which
the transverse electric field of CVPBs can be written as
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where ey and e, are two unit vectors in x and y directions,

po=1/X3+y% and ¢y =arc tan(yo/xo) are the polar radius and

polar angle in grating plane, respectively, and ¢ is the angle
between electric vector direction and polar radius direction. Eg is
the initial electric amplitude, wq is the waist of fundamental mode
CVPBs, and L},( -) is the Laguerre polynomial in the nth order with
index 1.

According to the Rayleigh-Sommerfeld integrals, the grating
transmission function modulated monochromatic electric field in
z > 0 half-space which is filled with homogeneous medium can be
expressed as
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where t(Xg,¥,0) is the grating transmission function, k is the wave
number, and r = /X2 +y2 422

For the CVPBs, one can substitute Eqgs. (1), (3), and (4) into
Egs. (5)-(7), and transform the Cartesian coordinate system into
cylindrical coordinate. Then, after tedious and direct integral, the

grating diffracted electric fields are obtained
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where e is unit vector in z direction, p=+/xX2+y2, g=
1/w%—ik/(2r), and the incomplete gamma functlon F( ). The
diffraction field can be simply presented as E,; = Ecer +Ey ey +Eye;,
where E; is the z component of the electric field. Eq. (8) indicates
that the electric fields of CVPBs maintain cylindrical symmetry
after being diffracted by the circular grating. In addition, the z
component electric field is obtained for the RPBs (where ¢ =0),
while there is not any z component of electric field for the APBs
(where ¢ = /2). Besides, when the opaque belt width b=T and
polarization vector angle ¢ =0, Eq. (8) reduces to Eq. (16) in
Reference [25] which demonstrated the circular aperture diffrac-
tion properties of RPBs. Similarly, when the opaque belt width
b =0, and polarization vector angle ¢ =0, Eq. (8) reduces to Egs.
(10)-(12) in Reference [27], which presented the free space
propagation properties of RPBs.

Considering the paraxial approximation, r can be expanded
into Taylor series neglecting the higher order terms

r=z+x*+y?/2) 9)

One can substitute r of exponential part in Eq. (8) with Eq. (9)
and the other terms with z. Then, the electric fields of CVPBs
diffracted by circular grating under the paraxial approximation are
obtained
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where g, = 1/w3 —ik/(22).

3. Numerical results and discussions

Based on the derived CVPBs circular grating diffracted electric
fields, the RPBs nonparaxial and paraxial diffraction behaviors are
discussed in this section. In this paper, all length units are normalized
by wavelength 2=1, and the incident beam amplitude is Eo=1.
As presented in previous works [25,26], the observation plane is set
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at plane z = 10z in the diffraction area (z > 0), where zg = 7w3 /1 is
the Rayleigh length. The Oth order RPBs and APBs (n = 0) with beam
waist wg = 4 diffracted nonparaxially by a circular grating with period
T=1.5, duty-cycle f=1-b/T=0.5and central aperture radius
a=0.32 are calculated. The intensity field (I = |Ex|? + |Ey|?> + |E.|?) of
the RPBs and APBs is plotted in Fig. 2(a) and (b). The two beams are
of the similar diffraction patterns, namely the two concentric rings,
but the diffraction rings intensity of the RPBs is slightly larger than
the APB's, as shown in Fig. 2(c). This is due to the longitudinal
intensity component (|E;|>) added in RPB's diffraction intensity
field except for the transverse intensity component (|Ex|% 4 |Ey|?), as
shown in Fig. 2(d) and (e). For longitudinal intensity component, the
maximum of the 1st order diffraction intensity is almost as large as
the Oth order diffraction intensity. However, the longitudinal
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intensity component is still very small, compared with the Oth order
diffraction transverse intensity component, as seen in Fig. 2(f).
Besides, it is noteworthy that the central intensity of the longitudinal
intensity component becomes nonzero.

The polarization can also be characterized by the well known
Stocks parameters, even the RPB's focus field with longitudinal
electrical component [28,29]. In this paper, the Stocks parameters
are employed to discuss the polarization properties of the grating
dlffracgon field. In the p-z plane, the radially electrical component
E,=Ex+ E y and longitudinal electrical component E ; are
considered as a pair of basic orthotropic electrical vectors in Stocks
parameter, where Sy, S1, S; and S5 are defined as

So = |Ez|* +E,? 11
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Fig. 2. The intensity contours of the (a) RPBs and (b) APBs diffracted nonparaxially by circular grating in plane z= 10z, (c) nonparaxial intensity curves in cross-section in
the plane y =0, (d) longitudinal and (e) transverse intensity component contours and (f) intensity curves of RPBs in the cross-section in plane y = 0; calculation parameters:

wo=4n=0,a=034 T=154and f=0.5.

a

Fig. 3. (a) Schematic diagram of the Poincaré sphere and (b) the polarization ellipse.
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S1=IE*—IE, (12)
Sy =2Re{E,E}} (13)
S3 = —2Im{E,E}} (14)

For a point in the observation plane, one can get its coordinate
position on the Poincaré sphere by normalizing the Stokes para-
meters as S; =S51/So, S2 =52/So and s3 =S3/Sp. On the Poincaré
sphere, each coordinate position represents a polarization state, as
shown in Fig. 3. The northern and southern poles are right and left
circular polarized states, respectively, while the equator means the
linearly polarized state. The others represent elliptical polarized
state which can be described by orientation angle, eccentricity and
handedness. The orientation angle

y =arc tan(s,/s1)/2 (15)

where 0 <y <z is the angle between the z-axis and the major
axis of the polarization ellipse. While the eccentricity | tan y|
represents the ratio of the two ellipse axes, where

x =arcsin(ss)/2 (16)

is the ellipticity angle, —z/4 <y <=z/4. When y is positive, the
sense of handedness means right handed; otherwise, it is left
handed. In the observation plane, the polarization properties of
the electric field along the radial direction are studied; the
orientation and ellipiticity angle curves of the polarization ellipses
are shown in Fig. 4. In some areas, pointed as A, B and C, both

x10
4 T T - 1
Intensity
35§ Orientation angle 1
—— Ellipticity angle

Intensity <a.u.>

Orientation and ellipiticity angle /rad

p/

Fig. 4. The intensity, orientation and ellipticity angle curves of the circular grating
diffracted RPBs, in plane z=10zg; calculation parameters: wg =4, n=0, a=0.34,
T=1.54and f =0.5. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)
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the orientation and ellipticity angles are dramatically changed.
However, the electric field intensities are so weak that the
polarization information is not considered in these areas. For the
other places, the ellipticity angle (blue line) is almost linear-like
but unequal to zero, which confirms that the polarization in the
p-z plane reduces from linear polarization to elliptical polarization
due to the longitudinal component. Nevertheless, as a result of the
small longitudinal component E, the ellipticity angle is not very
large, which means that the polarization ellipse is pretty oblate.
In order to distinguish the handedness, a black dot line y =0 is
added, as shown in Fig. 4. It is clear that in each order of the
diffraction field there are both the left and right hand elliptical
polarization states. For the orientation angle (red line), it distri-
butes symmetrically to the optical axis p = 0. For the two discrete
points, shown as D and E, where the transverse component equals
the longitudinal component (seen in Fig. 2(f)), which means that
Stocks parameter S; is 0, mathematically, y can be either z/4 or
—nr/4. Therefore, when the orientation angle y is negative,
according to the definition, = is added for keeping it positive.

The paraxial and nonparaxial RPBs circular grating diffraction
properties of the different orders are also studied. As shown in
Fig. 5(a)-(c), the paraxial diffraction effect is stronger than the
nonparaxial diffraction’s, and there are not only the Oth and 1st
order diffraction rings but also the 2nd order ring. Moreover, for
each nonparaxial diffraction order, the maximum intensity is also
weaker than the paraxial diffraction's. To the higher order RPBs, as
much more diffraction rings arise, the nonparaxial and paraxial
grating diffraction fields become much complex, as shown in
Fig. 6. Interestingly, with the RPBs order increasing, more and
more nonparxial and paraxial diffraction orders which locate from
the diffraction pattern center to periphery tend to overlap. For
example, the Oth nonparaxial and paraxial diffraction rings in
Fig. 6(a), similarly, the Oth and the 1st nonparaxial and paraxial
diffraction rings in Fig. 6(b) are almost overlapped. This suggests
that for the wider incident beam width, the paraxial diffraction
approximation is valid to calculate the intensity field distribution
around the optical axis areas.

As mentioned above, the beam orders imply that the incident
beam width will influence the diffraction intensity distribution. In
this section the impact of the beam waist on the diffraction field
will be further discussed. Here the calculation plane is fixed in
z=10x/2 to avoid the change in observation plane with the waist
adjustment. Taking the Oth RPB's circular grating nonparaxial
diffraction as example, one can easily find that the wider waist
leads to the larger diffraction intensity, as shown in Fig. 7(a). This
is because the bigger waist means larger grating areas illuminated
by the incident beam; hence much more energy flow can pass
through the grating. To further study the impact of beam waist on
the circular grating diffraction field, the Oth order nonparaxial and
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Fig. 5. The (a) nonparaxial and (b) paraxial diffraction intensity contours of the Oth order RPBs in the plane z= 10z and (c) nonparaxial and paraxial diffraction intensity
curves in the cross-section in plane y = 0; calculation parameters: wg =4, n=0, a=0.34, T=1.54, and f =0.5.
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Fig. 7. (a) The nonparaxial diffraction intensity curves of the Oth order RPBs under different waists in the cross-section in plane y =0 at z=10z/4 and (b) the normalized
intensity difference of the Oth order diffraction peaks (blue dots line), the Oth order nonparaxial (red circle line) and paraxial (black square line) diffraction peak positions
versus the beam waist calculation parameters: n =0, a =0.34, T = 1.54, and f = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

paraxial diffraction peak positions and normalized intensity
difference are studied. The normalized intensity difference is
defined as p=|I"—IP|/I", where I" and I’ are the Oth order
nonparaxial and paraxial diffraction peak intensities, respectively.
As plotted in Fig. 7(b), the normalized intensity difference (blue
dots line) decreases with increasing waist. When the beam waist
reaches to 3/, the normalized intensity difference reduces to 1.57%.
This implies that the intensity difference between the nonparaxial
and paraxial circular grating diffractions can be neglected and the
paraxial approximation is applicable, which is similar to the RPBs
circular aperture diffraction [25]. This result is also confirmed by
the Oth order diffraction peak position. It is shown that the Oth
order nonparaxial (red circle line) and paraxial (black square line)
diffraction peak positions gradually overlap and shift toward
optical axis as the waist increases. Therefore, the RPBs nonparaxial
circular grating diffraction properties can be observed under the
condition that the beam waist is very small.

Besides the beam waist, a circular grating structure such as the
grating period, duty-cycle and central aperture radius also plays a
very important role in the diffraction intensity distribution.
Therein, the grating period is also thought to be connected with

the number of diffraction order controlling. As shown in Fig. 8, the
higher diffraction orders arise under the condition of bigger
grating period. For example, when the grating period is 24, the
second diffraction order is obtained. When the grating period
decreases, the number of diffraction orders reduces and each of
the diffraction peak deviates from optical axis. With the change in
grating period, the intensity fluctuation or perturbation of each
order diffraction peak occurs. This phenomenon may result from
the incident RPBs peak electric field intensity alignment to the
grating transmission annular periodically. Another noteworthy
feature is that there is only the Oth order diffraction intensity for
the sub-wavelength grating diffraction which is similar to the
surface relief grating's.

In addition, the grating duty-cycle is essential for the diffraction
intensity distribution, as shown in Fig. 9(a); the larger duty-cycle
leads to the greater Oth order diffraction intensity. Obviously, the
wider transmission annular ring allows more beam electric cur-
rent to pass through the grating to the observation plane. How-
ever, when the duty-cycle is pretty large, the grating diffraction
intensity becomes weak, as shown by the blue square line in Fig. 9
(b), and the ratio of the 1st order diffraction peak to the Oth order
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diffraction peak decreases. Thus, one can allocate the intensity of
the Oth and the 1st order diffraction rings by changing the grating
duty-cycle. But it must be pointed that the position of the
two orders diffraction peaks may slightly shift, when the grating
duty-cycle modifies, as plotted in Fig. 9(b). Comparatively, the Oth
order diffraction peak position (red triangle line) has lesser
influence than the 1st order's (black triangle line).

At last, the impact of the central aperture radius a on the Oth
RPBs nonparaxial diffraction intensity is discussed. When the
aperture radius is very small, the incident beam waist is so large
that it makes the doughnut beam mainly illuminate at the grating
rings area; taking a = 0.3/ for example, the circular grating plays a
prominent role in the diffraction intensity distribution with the
obvious 1st order diffraction peak, as indicated by the pink curve
in Fig. 10. While increasing the aperture radius a, the doughnut
beam gradually covers the aperture, so the diffraction intensity
distribution is impacted by the aperture more strongly. Until the

x10°

1(x,0,z)
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Fig. 8. The nonparaxial diffraction intensity curves of the Oth order RPBs under
different grating periods in the cross-section in plane y =0, at z = 10z; calculation
parameters: wo =4, n=0, a=0.34, and f =0.5.

20 40 60

a
x10°
) ' " n [ —dutycycle=0.3
ﬂ —dutycycle=0.5
- dutycycle=0.7
A 15
=
@
v
g: 1
X
05
60 -40 -20 0 20 40 60
X/A

Peak postion x/A

J. Zhao et al. / Optics Communications 323 (2014) 61-67

aperture radius reaches to 1.44, the diffraction intensity (red line)
almost coincides with the intensity of the circular aperture
diffraction (black line). In this process, the 1st order diffraction
intensity gradually merges with the Oth order diffraction’s, and the
Oth order diffraction intensity fluctuation is also inevitable, since
the transmission changes with the variation in the central aper-
ture radius.

4. Conclusion

In summary, the nonparaxial and paraxial circular grating
diffraction properties of the RPBs have been studied. The analytical
expressions for the diffraction electric field have been derived
based on the Rayleigh-Sommerfeld diffraction integral. The RPBs
diffracted by circular aperture and propagated in free space can be
considered as two kinds of special cases for the circular grating
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Fig. 10. The nonparaxial Oth order RPBs diffraction intensity distribution with
different central aperture radii and the circular aperture diffraction with aperture
radius a = 1.44(black line) in the cross-section in planey = 0 at z = 10z; calculation
parameters: wp =4, n =0, T =1.54, and f = 0.5. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this article.)
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Fig. 9. (a) The nonparaxial diffraction intensity curves of the Oth order RPBs with different grating duty-cycles in the cross-section in plane y = 0 at z = 10z and (b) the ratio
of the 1st to Oth order diffraction peaks (blue square line), the Oth order diffraction peak (red triangle line) and the 1st diffraction peak position (black triangle line) versus
the grating duty-cycle calculation parameters: wg =4, n=0, a=0.34, and T = 1.5/. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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diffraction. The numerical results show that the beam waist,
grating period, duty-cycle and central aperture radius play critical
roles in the diffraction field. Some higher order diffraction rings
exist in the nonparaxial diffraction field, except for the sub-
wavelength circular grating diffraction. Moreover, the grating
duty-cycle can be used to modify the higher diffraction intensity.
Compared with the APBs, the longitudinal field component arises
in RPBs circular grating diffraction, leading to the polarization
degeneration from linear to elliptical in the p-z plane. However,
the longitudinal field component is much smaller than the
transverse field component especially for the large beam waist;
under this circumstance, the longitudinal field component can be
neglected and the nonparaxial diffraction can be approximated by
the paraxial diffraction.
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