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1. Introduction

Throughout this paper we assume that f is a real-valued function which is continuous on [0, c0). Let s(x) = f(ff(t)dt.
The Cesaro means of s(x) are defined by

o(s(x)) = %/Xs(t)dt.
0

The integral

o0
| rwa
0
is said to be Cesaro summable to a finite number L if
X t
lim o(s(x)) = lim / <1 — )f(t)dt =1L (1)
X—00 x—=>0o0 Jg X

If the integral

/ T fode =1 @)
0

exists, then limit (1) also exists. The converse is not necessarily true. Adding some suitable condition to (1) which is called a
Tauberian condition may imply (2). Any theorem which states that the convergence of the integral follows from the Cesaro
summability of the integral and some Tauberian condition is said to be a Tauberian theorem.

For a function s(x) = foxf(t)dt, we have

s(x) —o(s(x)) = v(x) 3)
where v(f (x)) = 1 [ tf (t)dt. Note that o/ (s(x)) = “L&,
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Define oy (s(x)) for each nonnegative integer k by

1 rx
ox(sx)) = ;/0 ok—1(s(t))dt, k=1
S(X)’ k=0.

Note that o1(s(x)) = o (s(x)).
De la Vallée Poussin means of fgf(t)dt are defined by

Ax

1
T(s(x)) = m s(t)dt

for A > 1,and
-l X
T(s(X) = —— s(t)dt
X — AX Jix
for0 < A < 1.
A real-valued function s(x) = fgf(t)dt is slowly oscillating in the sense of Stanojevic¢ [1] if

lim limsup max |s(t) —s(x)| = 0. (4)
A—1T x—>o00 X<t<ix

An equivalent reformulation of (4) can be given as follows:

lim limsup max |s(t) —s(x)| = 0. (5)

A—>17 x—>o00 AXSE=X

We note that for sequences of real numbers, an analogous definition was introduced by Stanojevi¢ [1]. Using this
definition, Canak [2] gave an alternative proof of generalized Littlewood Tauberian theorem for Abel summable sequences.

The aim of this paper is to prove the following generalized Littlewood Tauberian theorem for Cesaro summability of
improper integrals:

Theorem 1. If s(x) is Cesaro summable to s and s(x) is slowly oscillating, then lim,_, o, S(X) = s.

2. Lemmas

We need the following lemmas to prove our main theorem.
An equivalent definition of slow oscillation of s(x) is given in terms of v(x) by the following lemma.

Lemma 2. s(x) is slowly oscillating if and only if v(x) is slowly oscillating and bounded.
Proof. Suppose that s(x) is slowly oscillating. We first show that v(f (x)) = 0(1), x — oo. It is clear that
X 0 x/2j
f uf (wydu = Z uf (u)du. (6)
0 j=0

x/2+1

It follows from the identity

B B B
/ uf (wydu = / us’(u)du = [us(u)]g - / s(u)du
B
= —/ s(u)du + Bs(B) — as(a) — as(B) + as(B)
B
= —/ sdu + (B — a)s(B) + a(s(B) —s(@))
B
= —/ (s(u) —s(B))du + a(s(B) — s(@))
that
B
/ uf(wdu| < (B — Ol)afg‘a}ﬂ [s(®) —s(B)] + als(B) — s(a)]

<B an'i% Is(x) — s(B)I.
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If we choose 8 = % and g < 2, we have

l/ uf (u)du

We now show that o (s(x)) is slowly oscillating. Since o’ (s(x)) =

t [d t
/f(u)du §C/ —uzclogf
M x U X

<I<ZZ—_O(X) X — 00.

v(f(")) , we have

t
lo(s(t)) —o(s(x)| = / o'(s(w)du| =

X

393

for any x < t < Xx, whence we conclude that maxy<;<yx |0 (5(t)) — o (s(x))|] < ClogX. Taking the limit of both sides as

A — 17, we obtain

lim lim sup max lo(s(t)) —a(s(x))| =0.

A=>1T x—>o00 X=

It follows by Kronecker identity (3) that v(f (x)) is slowly oscillating.

Conversely, suppose that v(f (x)) is bounded and slowly oscillating. It is clear that boundedness of v(f (x)) implies slow
oscillation of o (s(x)). Since v (f (x)) is slowly oscillating, it follows by Kronecker identity (3) that s(x) is slowly oscillating. O

We represent the difference s(x) — o (s(x)) in two different ways.

Lemma 3.

(i) For A > 1,
AX

1
(U(S(kx)) —o(sx)) — o (s(t) — s(x))dt.

X

s(x) —o(s(Ax)) =

(ii) ForO < A < 1,

1 1 X
s(x) — o (s(Ax)) = T (0 (s(x)) — o (s(Ax))) + P (s(x) — s(t))dt.
- - AX

Proof. (i) From the definition of de la Vallée Poussin means of s(x), we have

1 AX 1 AX X
- X - 0 0

AX

for A > 1.Since o (s(Ax)) = 5L [o*s(t)dt, and o (s(x)) = 1 [ s(t)dt, we obtain

A 1 1
T(5(0)) = 57— 0o(() — o) = (1 + 7) o (s(Ax)) —

The difference t(s(x)) — o (s(Ax)) can be written as

1 1
T(5(0)) — o (s(x) = 0 (s(Ax)) — ~—— o (5(x)).

Subtracting o (s(Ax)) from the identity s(x) = t(x) — fx “(s(t) — s(x))dt, we get

AX—X
1
s(x) — o (s(Ax)) = (T(x) — o (s(Ax))) — — (S(t) — s(x))dt.
Using identity (8) we have
AX

1
(G(S(M)) —o(s®)) — > —x (s(t) — s(x))dt.

X

s(x) —o(s(Ax)) =

This completes the proof. O

(ii) Proof of Lemma 3(ii) is similar to that of Lemma 3(i).

]a(x).
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3. Proof of Theorem 1

Proof. Since s(x) is Cesaro summable to s, then o (s(x)) is also Cesaro summable to s. Hence, it follows from (3) that v(x) is
Cesaro summable to zero. It follows by Lemma 2 that v(x) is slowly oscillating. By Lemma 3(i) we have

000 — 0 (W0 = Lo v ()
By (11)

lv(x) —o(X)] < ﬁIO(v(M)) —o(X)| + max [v(t) — v()]. (12)
Taking the lim sup of both sides of (12) as x — oo, we have

ligitlplv(x) —o(@®)| < T ! llglsogplo(v(M)) —o ()| +llmsup max [v(t) —v()|. (13)

Since o (v(x)) converges, the first term on the right-hand side of (13) vanishes and (13) becomes

limsup |v(x) — o (v(x))| < lim sup max [v() — v(x)|. (14)

X—>00 X—>00

Letting A — 17 in (14), we have lim sup,_, o, |[v(x) — o (v(x))| < 0. This implies that v(x) = o(1) as x — oo. Since s(x) is
Cesaro summable to s and v(x) = o(1) as x — 00, lim,_, », S(x) = s. This completes the proof. O

Note that Theorem 1 can be also proved similarly by using the equivalent reformulation (5) of (4) and Lemma 3(ii).

Corollary 4. If s(x) is Cesaro summable to s and p(x)f (x) = O(p’(x)), x — oo, where

p(Ax)
lim lim sup
A—>1T x>0 p(X)

=1, (15)

then limy_, o, S(x) = s.

Proof. O

For any x < t < Ax, we have
t /u t
Is(t) — s()| = §C/p()u:Clo P

t
d
/xf(”) N2 PR’

whence we conclude that lim sup,_, ., MaXy<;<x [S(t) —s(x)| < Cloglimsup,_, o, pp((kx’;). Taking the limit of both sides as
A — 17, we obtain

lim lim sup max Is(t) —s(x)] =0

A1t xoo0o X=

i.e. s(x) is slowly oscillating.

Corollary 5 ([3]). If s(x) is Cesaro summable to s and xf (x) = 0(1), x — oo, then lim,_, o, S(X) = s.
Proof. Choose p(x) = xin Corollary 4. O

Finally, we show that slow oscillation of v(x) is also a Tauberian condition for Cesaro summability of improper integrals.

Theorem 6. If s(x) is Cesaro summable to s and v(x) is slowly oscillating, then lim,_, », S(X) = s.

Proof. Since s(x) is Cesaro summable to s, then o (s(x)) is also Cesaro summable to s. Hence, it follows from (3) that v(x)
is Cesaro summable to zero. Applying identity (3) to v(x), we have v(v(x)) is Cesaro summable to zero. By Lemma 3(i) we
have

Ax

1
1 (@A) o)) — —— | WD) —vE)d. (16)

X

v(v(x) — o (w(v(Ax))) =

By (16)

1
[P(() — @) = o EG0) — )]+ max [(E) - VEE). (17)
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Taking the lim sup of both sides of (17) as x — oo, we have

limsup [v(v(x)) — o (W(X))] = 3 L im sup |o (v(v(Ax))) — o (V(v(X)))]

X—>00 -1 X—00
+ limsup max |v(v(t)) — v(v(X))|. (18)
Xx—o00 XSt<Ax

Since o (v(v(x))) converges, the first term on the right-hand side of (18) vanishes and (18) becomes

limsup [v(v(x)) — o (v(v(x)))| < limsup max |[v(v(t)) — v(v(X))]. (19)

X—00 x—oo0 X<t<ix
Letting A — 17 in (19), we have lim sup,_, ., [v(v(x)) — o (v(v(x)))| < 0. This implies that v(v(x)) = o(1) as x — oo.
From identity v(x) — o (v(x)) = v(v(x)), we obtain v(x) = o(1). Since s(x) is Cesaro summable to s and v(x) = o(1) as
X — 00, limy_, o, s(x) = s. This completes the proof. O
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