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Trace distance and superfidelity play an important role in quantum information theory. The aim of this
Letter is to consider an inequality involving trace distance and superfidelity in infinite dimension and
give a necessary and sufficient condition for equality of this inequality. In addition, some related results
involving trace distance and superfidelity are obtained.
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1. Introduction

In quantum information theory, an essential task is to distin-
guish two quantum states. One of the important tools is the trace
metric, another tool is quantum fidelity [1–9]. Both are widely
used by the quantum information community and have found ap-
plications in a number of problems such as quantum cryptography
[10] and quantum phase transitions [11]. The trace distance is also
related to the von Neumann entropy and relative entropy [3].

The mathematical description of a quantum mechanical system
is based on a complex Hilbert space H, with bounded quantum
observables being represented by bounded self-adjoint operators
A acting on H. Let T (H) be the set of all trace class operators
on H, P(H) the set of all orthogonal projections and S(H) the
set of all density operators, i.e., the trace class positive operators
on H of unit trace. The elements ρ ∈ S(H) represent the states
of a quantum system, and the probability that a quantum effect A
occurs in the state ρ is given by Pρ(A) = tr(ρ A). If A is a quantum
observable, then we define

|A| = (
A2) 1

2 , A+ = |A| + A

2
and A− = |A| − A

2
,

where (A2)
1
2 is the unique positive square root of A2. For ρ,σ ∈

S(H), the trace distance and the fidelity are defined respectively
by

D(ρ,σ ) = 1

2
tr |ρ − σ | and F (ρ,σ ) = (

tr

√
ρ

1
2 σρ

1
2
)2

.

In [12], a new fidelity, called superfidelity, was defined as
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G(ρ,σ ) = trρσ +
√

1 − trρ2
√

1 − trσ 2.

It was shown that when ρ and σ are qubit states, the superfidelity
G(ρ,σ ) coincides with fidelity F (ρ,σ ). The most interesting fea-
ture of superfidelity is that it gives an upper bound for fidelity
[12], that is

F (ρ,σ ) � G(ρ,σ ),

for ρ,σ ∈ S(H), where H is a finite-dimensional space. Very re-
cently, the properties of superfidelity have been established and
studied by many authors [6,12–16]. In [16], the superfidelity has
been applied to quantum circuits to enable a measure of distance
between two quantum channels, and in [15] a new probability
measure was introduced in terms of superfidelity. In particular, if
H is a finite-dimensional space, the inequality

1 − G(ρ,σ ) � D(ρ,σ ) (1)

was obtained in [14]. This inequality was also conjectured in [13]
and verified numerically for small dimensions.

The purpose of this Letter is to consider inequality (1) in an
infinite-dimensional space and give a necessary and sufficient con-
dition for saturation of inequality (1). In addition, we consider
the perturbational upper and lower bound of G(φA(ρ),ρ) over all
states of a quantum system, where φA is a trace preserving, unital
quantum operation.

2. Saturation of inequality (1)

The following result is well known. For the reader’s conven-
ience, we give a simple proof.
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Lemma 2.1. Let ρ,σ ∈ S(H). Then 0 � D(ρ,σ ) � 1, and D(ρ,σ ) = 1
if and only if ρσ = 0.

Proof. As in the proof for the finite-dimensional case, we get
D(ρ,σ ) = max{tr(P (ρ − σ)): P ∈ P (H)}. Thus 0 � D(ρ,σ ) � 1.

If D(ρ,σ ) = 1, then there exists a projection P1 ∈ P (H) such
that tr(P1ρ) − tr(P1σ) = 1. It follows from 0 � tr(P1ρ) � 1 and
0 � tr(P1σ) � 1 that tr(P1ρ) = 1 and tr(P1σ) = 0, which yields
P1σ = 0 and ρ P1 = ρ . Thus ρσ = ρ P1σ = 0. The inverse implica-
tion is evident. �

The following is the main result of this section.

Theorem 2.2. Let ρ,σ ∈ S(H). Then 1 − D(ρ,σ ) � G(ρ,σ ), with
equality if and only if one of the following hypotheses holds:

(i) ρ = σ ;
(ii) ρσ = σρ and ρ or σ is a pure state.

Proof. Let P+ denote the projection onto the subspace
R[(ρ − σ)+] and P− = I − P+ , where R[(ρ − σ)+] is the clo-
sure of the range (ρ − σ)+ . Then P+(ρ − σ) = (ρ − σ)+ , and
P−(ρ − σ) = −(ρ − σ)− . By a similar calculation as in [14], we
obtain that the inequalities (21)–(24) and Eq. (25) in [14] also
hold in an infinite-dimensional system (for details, see [14, The-
orem 1]). Thus the inequality 1 − D(ρ,σ ) � G(ρ,σ ) holds in an
infinite-dimensional system as well.

In the following, we show a necessary and sufficient condition
for the equality 1 − D(ρ,σ ) = G(ρ,σ ).

The “if” part: If ρ = σ , then it is clear that 1 − D(ρ,σ ) =
G(ρ,σ ). In the following, we assume that ρσ = σρ and ρ is a
pure state. Suppose ρ = |φ〉〈φ| and the subspace H1 is spanned by
the state |φ〉. Then

ρ =
(

1 0
0 0

)
: H1 ⊕H⊥

1 → H1 ⊕H⊥
1 . (2)

Let

σ =
(

a1 σ1
σ ∗

1 σ2

)
: H1 ⊕H⊥

1 → H1 ⊕H⊥
1 , (3)

where σ1 is an operator from H⊥
1 into H1 and σ2 is an operator

from H⊥
1 into H⊥

1 . It is obvious that σ ∈ S(H) implies that a1 � 0,
σ2 � 0, and a1 + tr(σ2) = 1. By a direct calculation, we obtain from
ρσ = σρ that σ1 = 0 and σ ∗

1 = 0. Thus

|ρ − σ | =
(

1 − a1 0
0 σ2

)
: H1 ⊕H⊥

1 → H1 ⊕H⊥
1 ,

which means D(ρ,σ ) = 1 − a1. By Eqs. (2) and (3), we have
tr(ρσ ) = a1, so 1 − D(ρ,σ ) = G(ρ,σ ).

The “only if” part: As in the proof of [14, Eq. (25)] for the finite-
dimensional case, we have

D(ρ,σ ) = 1

2
(tr P+ρ − tr P+σ + tr P−σ − tr P−ρ)

= 1 − tr P+σ − tr P−ρ. (4)

By the assumption that 1 − D(ρ,σ ) = G(ρ,σ ), we have (for a de-
tailed calculation see [14, Eq. (26)])√

1 − trρ2
√

1 − trσ 2 = tr P+(I − ρ)σ + tr P−ρ(I − σ). (5)

It is clear that tr[P+(I − ρ)(ρ − σ)] = tr[(I − ρ)(ρ − σ)+] � 0 im-
plies

tr
[

P+(I − ρ)ρ
]
� tr

[
P+(I − ρ)σ

]
. (6)
Similarly, we obtain that

tr
[

P−ρ(I − ρ)
]
� tr

[
P−ρ(I − σ)

]
. (7)

Furthermore, as in the finite-dimensional case [14, inequalities
(22), (23)], we also get

1 − trρ2 � tr
[

P+(I − ρ)σ
] + tr

[
P−ρ(I − σ)

]
(8)

and

1 − trσ 2 � tr
[

P+(I − ρ)σ
] + tr

[
P−ρ(I − σ)

]
. (9)

Case 1. Suppose that 1 − trσ 2 > 0 and 1 − trρ2 > 0. Then combin-
ing (5), (8) and (9), we have

1 − trρ2 = tr
[

P+(I − ρ)σ
] + tr

[
P−ρ(I − σ)

] = 1 − trσ 2, (10)

which means G(ρ,σ ) = trρσ +1− trρ2, so 1− D(ρ,σ ) = G(ρ,σ )

implies that tr |ρ −σ |+2 trρσ −2 trρ2 = 0. Thus tr[|ρ −σ |− (ρ −
σ)2] = 0.

On the other hand, as −I � ρ − σ � I , we have |ρ − σ | � I ,
so (ρ − σ)2 = |ρ − σ |2 � |ρ − σ |. Then |ρ − σ | = |ρ − σ |2, which
means that |ρ − σ | is a projection. Hence (ρ − σ)+ and (ρ − σ)−
are projections. By Lemma 2.1, we know that

1 � D(ρ,σ ) = tr(ρ − σ)+ = tr(ρ − σ)−;
hence we conclude that

tr(ρ − σ)+ = tr(ρ − σ)− = 0 or

tr(ρ − σ)+ = tr(ρ − σ)− = 1.

Thus D(ρ,σ ) = 0 or D(ρ,σ ) = 1, so Lemma 2.1 implies that ρ = σ
or ρσ = 0.

Moreover, if ρσ = 0, then it is clear that 1 − D(ρ,σ ) = G(ρ,σ )

implies
√

1 − trρ2
√

1 − trσ 2 = 0, so 1 − trρ2 = 0 or 1 − trσ 2 = 0.
This contradiction with the assumption that 1 − trσ 2 > 0 and 1 −
trρ2 > 0 shows that ρ = σ .

Case 2. Suppose that 1 − trσ 2 = 0 or 1 − trρ2 = 0. Without loss
of generality, we assume that 1 − trρ2 = 0; then trρ2 = 1 implies
that ρ is a pure state. Furthermore, combining (5) and (8), we get

1 − trρ2 = tr
[

P+(I − ρ)σ
] + tr

[
P−ρ(I − σ)

]
.

Combining (6) and (7), we have

tr
[

P+(I − ρ)ρ
] = tr

[
P+(I − ρ)σ

]
and

tr
[

P−ρ(I − ρ)
] = tr

[
P−ρ(I − σ)

]
,

which yields

(I − ρ)(ρ − σ)+ = 0

and

ρ(ρ − σ)− = 0.

Then

(ρ − σ)+ − ρ(ρ − σ) = (I − ρ)(ρ − σ)+ + ρ(ρ − σ)− = 0,

which means

ρ(ρ − σ) = (ρ − σ)+ = (ρ − σ)ρ,

so ρσ = σρ . �
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Remark. Theorem 2.2 shows that the equation 1 − D(ρ,σ ) =
G(ρ,σ ) implies the equation F (ρ,σ ) = G(ρ,σ ). However, the re-
verse implication does not hold. A simple example comes from the
two-dimensional Hilbert space, in which for any two states the su-
perfidelity is equal to quantum fidelity [12].

For superfidelity, we can define the following function:

C(ρ,σ ) := √
1 − G(ρ,σ ), for ρ,σ ∈ S(H).

We recall that the Hilbert–Schmidt norm of ρ ∈ S(H) is defined

as ‖ρ‖HS := (trρ2)
1
2 . It is shown in [13] that C(ρ,σ ) is a genuine

metric. The following two results show that the topologies induced
by C(ρ,σ ) and DHS(ρ,σ ) are the same on S(H) if H is a finite-
dimensional space.

Proposition 2.3. Let ρ,σ ∈ S(H). Then

(i) ‖ρ − σ‖HS �
√

2C(ρ,σ ),
(ii) ‖ρ − σ‖HS = √

2C(ρ,σ ) if and only if trρ2 = trσ 2 .

Proof. (i)

‖ρ − σ‖HS �
√

2
√

1 − G(ρ,σ )

⇐⇒ 2 − 2
√

1 − trρ2
√

1 − trσ 2 � trρ2 + trσ 2

⇐⇒ (
1 − trρ2) + (

1 − trσ 2) � 2
√

1 − trρ2
√

1 − trσ 2.

(ii) The conclusion is clear, because the equality between geo-
metric and arithmetic means is satisfied only in the case of equal
factors in the proof of (i). �
Proposition 2.4. Let H be a finite-dimensional space. Then the topol-
ogy induced by C(ρ,σ ) and DHS(ρ,σ ) is the same on S(H), where
DHS(ρ,σ ) := ‖ρ − σ‖HS is called the Hilbert–Schmidt distance.

Proof. It is sufficient to show that

C(ρn,ρ) −→ 0 ⇐⇒ DHS(ρn,ρ) −→ 0, n −→ ∞.

Given Proposition 2.3, it remains to show that if DHS(ρn,ρ) −→ 0,
then C(ρn,ρ) −→ 0, n −→ ∞. Assume that DHS(ρn,ρ) −→ 0, so√

tr[(ρn − ρ)2] −→ 0, n −→ ∞. Using the Cauchy–Schwarz in-
equality, we get tr(|ρn − ρ|) �

√
tr[(ρn − ρ)2]√m, where m is the

dimension of H, which yields tr(|ρn −ρ|) −→ 0, n −→ ∞. Thus by
the formula C(ρ,σ ) �

√
D(ρ,σ ), we know that

C(ρn,ρ) �
√

1

2
tr

(|ρn − ρ|) −→ 0, for n −→ ∞. �
3. Characterization of inf{G(φA(ρ),ρ): ρ ∈ S(H)}

In this section, let B(H) be the set of all bounded linear op-
erators on a finite-dimensional Hilbert space H. Recall that the
operator-sum representation is a key result of the quantum oper-
ation formalism. Namely, according to a well-known result [17],
a general completely positive quantum operation is a bounded lin-
ear operator defined on B(H) which has the form

φA(B) =
n∑

i=1

Ai B A∗
i , (11)

where Ai ∈ B(H) (1 � i � n) are arbitrary bounded operators. If∑n
i=1 A∗

i Ai = I , then φA is said to be trace preserving. If φA(I) = I
(equivalently

∑n
i=1 Ai A∗

i = I), then the quantum operation φA is
called unital.
Quantum measurements that have more than two values are
described by quantum effect valued measures, that is, for i =
1,2, . . . ,n, 0 � Ai � I satisfy

∑n
i=1 Ai = I . In this case, the Lüders

operation (see [18]) is defined as a bounded linear map ΛA :
T (H) → T (H) that satisfies

ΛA(S) =
n∑

i=1

A
1
2
i S A

1
2
i .

In the following, we consider the perturbational upper and lower
bound of G(φA(ρ),ρ) over all states of a quantum system.

Theorem 3.1. Let φA be a trace preserving, unital quantum operation.
Then

(i) sup{G(φA(ρ),ρ): ρ ∈ S(H)} = 1,
(ii) inf{G(φA(ρ),ρ): ρ ∈ S(H)} = 0 if and only if there exists

|φ〉 ∈H, such that tr(Ai |φ〉〈φ|) = 0, for i = 1,2, . . . ,n.

Proof. Since H is a finite-dimensional Hilbert space, we know that
S(H) is a compact set in the norm topology. It is clear that the
function G(φA(ρ),ρ) of ρ is a continuous function in the norm
topology. Thus sup and inf can be replaced by max and min, re-
spectively.

(i) By Schauder’s fixed point theorem [19, p. 150], we get that
there exists a state σ such that φA(σ ) = σ , as S(H) is a com-
pact convex set. Then it is easy to see that sup{G(φA(ρ),ρ):
ρ ∈ S(H)} = 1.

(ii) If inf{G(φA(ρ),ρ): ρ ∈ S(H)} = 0, then there exists ρ0 ∈
S(H), such that

φA(ρ0)ρ0 = 0 and
√

1 − trρ2
0

√
1 − tr

[
φA(ρ0)2

] = 0.

Case 1. If 1 − trρ2
0 = 0, then ρ0 is a pure state. Let ρ0 = |φ〉〈φ|. It

follows from φA(ρ0)ρ0 = 0 that

n∑
i=1

(〈φ|A∗
i |φ〉Ai

)|φ〉〈φ| =
n∑

i=1

(
Ai|φ〉〈φ|A∗

i

)|φ〉〈φ| = 0,

so

n∑
i=1

(∣∣〈φ|Ai|φ〉∣∣2) = 0,

which means 〈φ|Ai|φ〉 = 0, for i = 1,2, . . . ,n. Hence tr(Ai |φ〉〈φ|) =
0, for i = 1,2, . . . ,n.

Case 2. If 1 − tr[φA(ρ0)
2] = 0, then φA(ρ0) is a pure state. Let

φA(ρ0) = |ψ〉〈ψ |. It is easy to see that

1 = 〈ψ |
n∑

i=1

Aiρ0 A∗
i |ψ〉 =

n∑
i=1

〈ψ |Aiρ0 A∗
i |ψ〉

=
n∑

i=1

∥∥ρ 1
2

0 A∗
i |ψ〉∥∥2 �

(
n∑

i=1

∥∥A∗
i |ψ〉∥∥2

)∥∥ρ 1
2

0

∥∥2
.

As

n∑
i=1

∥∥A∗
i |ψ〉∥∥2 = 〈ψ |

n∑
i=1

Ai A∗
i |ψ〉 = 1,

we have ‖ρ0‖ = ‖ρ
1
2

0 ‖2 � 1, then trρ0 = 1 implies that ρ0 is a pure
state. The remaining part of the proof is the same as in Case 1. �
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Corollary 3.2. Let ΛA be a Lüders operation. Then inf{G(ΛA(ρ),ρ):
ρ ∈ S(H)} > 0.

Proof. Assume the opposite, i.e., that

inf
{

G
(
ΛA(ρ),ρ

)
: ρ ∈ S(H)

} = 0.

By Theorem 3.1, we know that there exists |φ〉 ∈ H, such that
tr(Ai |φ〉〈φ|) = 0, for i = 1,2, . . . ,n, so Ai |φ〉〈φ| = 0. Then
A2

i |φ〉〈φ| = 0, for i = 1,2, . . . ,n, which yields

|φ〉〈φ| =
n∑

i=1

A2
i |φ〉〈φ| = 0.

This is a contradiction. �
4. Conclusion

As an extension of quantum fidelity, a new fidelity, called su-
perfidelity is defined in [12]. In this Letter, we consider an im-
portant inequality involving superfidelity and trace metric in an
infinite-dimensional space and give a necessary and sufficient con-
dition for saturation of this inequality. Our main result shows
that this inequality is saturated only in an extreme condition.
On the other hand, in the finite-dimensional case we also obtain
a topology structure involving superfidelity and the upper and
lower perturbation bound between a state and its transforma-
tion by a quantum operation. All results in this Letter show
that superfidelity can be used to infer the distinguishability of
states.
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