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The management of cotton yield behavior in agricultural areas is a very important task because it influ-
ences and specifies the cotton yield production. An efficient knowledge-based approach utilizing the
method of fuzzy cognitive maps (FCMs) for characterizing cotton yield behavior is presented in this
research work. FCM is a modelling approach based on exploiting knowledge and experience. The novelty
of the method is based on the use of the soft computing method of fuzzy cognitive maps to handle
experts’ knowledge and on the unsupervised learning algorithm for FCMs to assess measurement data
and update initial knowledge.

The advent of precision farming generates data which, because of their type and complexity, are not
efficiently analyzed by traditional methods. The FCM technique has been proved from the literature effi-
cient and flexible to handle experts’ knowledge and through the appropriate learning algorithms can
update the initial knowledge. The FCM model developed consists of nodes linked by directed edges,
where the nodes represent the main factors in cotton crop production such as texture, organic matter,
pH, K, P, Mg, N, Ca, Na and cotton yield, and the directed edges show the cause-effect (weighted) rela-
tionships between the soil properties and cotton field.

The proposed method was evaluated for 360 cases measured for three subsequent years (2001, 2003
and 2006) in a 5 ha experimental cotton yield. The proposed FCM model enhanced by the unsupervised
nonlinear Hebbian learning algorithm, was achieved a success of 75.55%, 68.86% and 71.32%, respectively
for the years referred, in estimating/predicting the yield between two possible categories (“low” and
“high”). The main advantage of this approach is the sufficient interpretability and transparency of the
proposed FCM model, which make it a convenient consulting tool in describing cotton yield behavior.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

nature of the causality. The second characteristic assigns a fuzzy
number or linguistic value to reflect the strength of the causality

Fuzzy cognitive maps constitute an attractive modeling tech-
nique for complex systems. They belong to the class of soft com-
puting techniques that follow an approach similar to the human
reasoning and decision making process. More specifically, fuzzy
cognitive maps (FCMs) is a kind of qualitative modeling tool; they
provide a simple and straightforward way to model the relation-
ships among different factors. Fuzzy cognitive maps can describe
any system using a model with three distinct characteristics: (a)
signed causality indicating positive or negative relationship, (b)
the strengths of the causal relationships take fuzzy values, and
(c) the causal links are dynamic i.e. the effect of a change in one
concept/node affect other nodes, which in turn may affect other
nodes. The first characteristic implies both the direction and the
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or the degree of association between concepts. Finally, the third
characteristic reflects a feedback mechanism that captures the dy-
namic relationship of all the nodes, which may have temporal
implications.

FCMs can be obtained by asking human experts to define the
variables of the system and to identify relationships among the
variables using ‘if-then’ rules to justify the cause and effect rela-
tionship, and infer a linguistic weight for each connection (Stylios
& Groumpos, 1999; Papageorgiou & Groumpos, 2005b; Stylios &
Groumpos, 2004). FCM consists of nodes which illustrate the vari-
ables and the different aspects of the system’s behavior. These
nodes (concepts) interact with each other showing the dynamics
of the model. Human experts who supervise a system and know
its behavior under different circumstances develop a FCM model
of the system in such a way that their accumulated experience
and knowledge are integrated in the causal relationships between
factors/characteristics (Stylios & Groumpos, 1999). It is a very
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convenient, simple, and powerful tool through the large number of
applications.

In general, changes in the topology or in the weight parameters
of the FCM model may result in totally different inference out-
comes. FCMs have been used in many different scientific fields
for modeling and decision making: political developments (Taber,
1991), electrical circuits (Styblinski & Meyer, 1988), virtual sea
world of dolphins, shark and fish (Dickerson & Kosko, 1994), orga-
nizational behavior and job satisfaction (Craiger, Weiss, Goodman,
& Butler, 1996) and the economic demographics of world nations
(Schneider, Kandel, & Chew, 1998). FCMs were combined with data
mining techniques to further utilize expert knowledge (Hong &
Han, 2002; Lee, Kin, Chung, & Kwon, 2002). Skov and Svenning
(2003) combined FCM with a geographic information system in or-
der to apply expert knowledge to predict plant habitat suitability
for a forest. Mendoza and Prabhu (2003) used cognitive mapping
to examine the linkages and interactions between indicators ob-
tained from a multi-criteria approach to forest management and
recently (Mendoza & Prabhu, 2006) presented soft system dynam-
ics models and applications for sustainable forest management.

Moreover, FCMs were used to support the aesthetical analysis of
urban areas (Xirogiannis, Stefanou, & Glykas, 2004), and for the
management of relationships among organizational members of
airline services (Kang & Lee, 2004). Liu and Satur (1999) investi-
gated inference properties of FCMs and they proposed contextual
FCMs introducing the object-oriented paradigm for decision sup-
port and they applied contextual FCMs to geographical information
systems (Liu, 2000). Furthermore, FCMs were used in many disci-
plines for easy comprehension of complex social systems and for
decision making tasks (Miao & Liu, 2000; Papageorgiou & Groum-
pos, 2005a; Papageorgiou, Stylios, & Groumpos, 2003; Papageor-
giou, Stylios, & Groumpos, 2004; Peliez & Bowles, 1996).
Furthermore, FCMs using fuzzy measures have been used for eval-
uation of water quality failures in distribution networks (Sadiq,
Kleiner, & Rajani, 2006).

This work aims to apply the soft computing technique of FCMs
accompanied with an efficient unsupervised learning algorithm for
describing the cotton yield management in precision farming.

Cotton yield prediction in agricultural areas is a crucial factor
because it is used to specify cotton crop management. The impor-
tance of this factor is more critical when site specific management
is considered, due to the existence of many different cases for the
same data in the same field. Traditionally crop management has
been based on (qualitative) experience but we are trying to put
management on a more quantitative basis - and some research
has partly succeeded to do this.

The next steps beyond agronomic methods are crop growth
models. Many crop growth models have been developed (Fraisse,
Sudduth, & Kitchen, 2001; Mathews & Blackmore, 1997; Werner
et al., 2000) with questionable value due to large development la-
bor and time. In the area of cotton crop production and manage-
ment, a crop growth model, named COTMAN, has been
developed for cotton crop management (COTMAN, 2007). The COT-
MAN computer software is used to monitor crop development and
makes it easy to enter data and generate the reports used to make
management decisions. Furthermore, the GOSSYM/COMAX
(McKinion & Wagner, 1994; McKinion et al., 2001) cotton growth
model expert system and the GRASS [Grass GIS, 2008] geographic
information system have been used to develop a spatial simulation
that produces spatially variable outputs.

A large number of approaches, models, algorithms, and statisti-
cal tools have been proposed and used for assessing the yield predic-
tion in agriculture. Many authors used simple linear correlations of
yield with soil properties but the results varying from field to field
and year to year (Drummond, Sudduth, & Birrell, 1995; Gemtos,
Markinos, Toulios, Pateras, & Zerva, 2004; Khakural, Robert, & Hug-
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gins, 1999). Many other studies, contain complex linear methods
like multiple linear regression, were accomplished with similar re-
sults (Drummond et al., 1995; Khakural et al., 1999; Kravchenko &
Bullock, 2000). Some authors proposed non-linear statistical meth-
ods to investigate the yield response (Adams, Cook, Caccetta, & Prin-
gle, 1999; Wendroth, Jurschik, & Nielsen, 1999).

Expert systems and artificial intelligent algorithms are a rela-
tively new subset of nonlinear techniques. They have been pro-
posed in agriculture for decision making and decision support
tasks. More specifically, expert systems (Plant & Stave, 1991; Rao,
1992) have been developed and applied in different fields in agri-
culture to give advices and make management decisions.

In this context many studies have been reported using artificial
intelligence techniques and a few of them focalized in the spatial
analysis of produced data in precision agriculture. The most of
them use artificial neural networks (ANNs) and machine learning
algorithms for setting target yields which is one of the problems
in precision agriculture (Canteri et al., 2002; Liu, Goering, & Tian,
2001; Miao, Mulla, & Robert, 2006). Schultz, Wieland, and Lutze
(2000) summarized the advantages of applying neural networks
in agroecological modeling, including the ability of ANN to handle
both quantitative and qualitative data, merge information and
combine both linear and non-linear responses. Neural networks
have been proposed for identifying important factors influencing
corn yield and grain quality variability (Miao et al., 2006), for data
analysis (Irmak et al., 2006), for prediction crop yield based on soil
properties (Drummond, Sudduth, Joshi, Birrell, & Kitchen, 2003),
for setting target corn yields (Liu et al., 2001). Shearer et al.
(1999) studied a large number of variables, including fertility, sa-
tellite imagery, and soil conductivity, for a relatively small number
of observations in one site-year of data.

In the case of knowledge-based systems using fuzzy logic tech-
niques only a few studies have been accomplished till today (Amb-
uel, Colvin, & Karlen, 1994; Khan & Khor, 2004). The first trial to
incorporate fuzzy logic techniques to develop yield models for pre-
cision farming was made by Ambuel et al. (1994). They examined
the potential of using fuzzy logic to develop efficient simulation
models that could predict corn yields in central lowa. The first re-
sults on predicted yields compared with the measured ones were
preliminary and no further research was done.

A more recent study using fuzzy logic principles was reported
by Khan and Khor (2004). He proposed a framework of a fuzzy
rule-based cognitive map. The simulation model based on fuzzy lo-
gic for the mapping of FCM input state space to the output state
space have been presented and implemented for crop yield estima-
tion, considering only four yield factors (pH, potassium, phospho-
rous and organic matter) related to corn crop yield. The model
predicted the variations in corn crop yield with each one of four
factors without using real cases or data. The FCM simulations were
conducted to study the effects of varying the membership grade of
one yield factor, while keeping the other three factors constant at
0.1. These simulations were preliminaries and further work is
needed using real measurements.

Therefore, the success of precision agriculture depends on accu-
rate and detailed knowledge of yield potential and crop response to
specific conditions. In our previous work (Markinos, Papageorgiou,
Stylios, & Gemptos, 2007), the modeling approach of FCMs was
introduced for the first time to help make decisions in precision
agriculture. An enhanced approach of that work utilizing FCM
learning algorithms to handle initial knowledge is accomplished
and proposed in the present paper. The use of the soft computing
technique of FCMs is suggested from a different standpoint and
is enriched with an unsupervised learning algorithm, the nonlinear
Hebbian learning (NHL), for estimating the cotton yield for differ-
ent case studies and characterizing the data into two production
yield categories.
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The aim of the work reported is to present a methodology that
can determine cotton yield behavior in precision farming, based on
artificial intelligence (Al) techniques and particularly based on as-
pects related to knowledge representation. In Al, there are a variety
of techniques used for representing knowledge: production rules,
semantic networks, frameworks, scripts, statements, logic and fuz-
zy cognitive maps, among others. In this case, the model was based
on fuzzy cognitive maps (FCM). FCM was chosen because of: (a) the
nature of the application (estimation of yield trend is a complex
process with sufficient interacting parameters and FCMs are suit-
able for this kind of problem), (b) the user’s skills where FCMs ex-
ploit experience and accumulated knowledge from experts, (c)
ease of use and (d) low time requirement.

2. Theory of FCMs

Cognitive maps were introduced by Axelrod (1976) as a formal
way of modeling decision making in social-economic and politic
systems. Kosko (1986) modified Axelrod’s cognitive maps, with
binary values; he suggested the use of fuzzy causal functions tak-
ing numbers in [-1, 1] so he introduced the fuzzy cognitive map
(FCM). Kosko examined the behavior of FCMs explaining the infer-
ence mechanism of FCM. He applied FCMs to model the effect of
different policy options using a computational method (Kosko,
1997). The interesting update of concept maps using fuzzy logic
is the temporal and causal nature of the FCMs (Kosko, 1992; Lin
& Lee, 1996). FCMs express causality over time and allow for cau-
sality effects to fluctuate as input values change. Nonlinear feed-
back can only be modeled in a time-based system. FCMs are
intended to model causality, not merely semantic relationships be-
tween concepts (Sowa, 1991). By modeling causality over time,
FCMs facilitate the exploration of the implications of complex con-
ceptual models, as well as representing them with greater
flexibility.

FCMs offer an alternative knowledge fusion scheme (Kosko,
1986; Taber, 1994). An FCM is a fuzzy causal map with closed
loops. It consists of nodes and weighted arcs. Nodes of the graph
stand for the concepts that are used to describe the behavior of
the system and they are connected by signed and weighted inter-
connections representing the causal relationships that exist be-
tween the concepts, as is illustrated in Fig. 1. It has the topology
of a fuzzy signed directed graph and dynamics similar to feedback
non-linear neural networks.

Fig. 1. A simple fuzzy cognitive map.
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It should be mentioned that all the values in the graph are fuz-
zy, so concepts take the values in the range between [0, 1] (i.e. FCM
is a bivalent state) and the weights of the interconnections belong
to the interval [—1, 1]. From simple observation of the graphical
representation of FCMs, it becomes clear which concept influences
other concepts, showing the interconnection among concepts and
it permits thoughts and suggestions for the reconstruction of the
graph, i.e. the adding or deleting of an interconnection or a
concept.

Fig. 1 illustrates a graphical representation of a FCM consisting
of five concepts (C1-C5) and ten weights R;; (cause-effect relation-
ships among the concepts).

FCMs allow experts to express their knowledge by drawing
weighted causal digraphs. At first, they identify key domain issues
or concepts. Secondly, they identify the causal relationships among
these concepts and thirdly, they estimate causal relationships
strengths. The achieved graph (FCM) shows not only the compo-
nents and their relations but also the strengths. All experts are
asked to determine the relevant factors in a brain storm meeting.
Thus, the constructed FCM will represent the knowledge and expe-
rience of all related experts (Stylios & Groumpos, 2004). FCMs can
be produced by experts manually or generated by other source of
information computationally (manual FCMs and automated FCMs).

The cause and effect interconnection between two concepts C;
and C; is described with the weight R;;, taking a value in the range
—1 to 1. There are three possible types of causal relationships be-
tween concepts:

e R; > 0 which indicates positive causality between concepts C;
and C;. That is, an increase (decrease) in the value of C; leads
to an increase (decrease) in the value of C;.

e R; < 0 which indicates negative causality between concepts C;
and C;. That is, an increase (decrease) in the value of C; leads
to a decrease (increase) in the value of C;.

e R; = 0 which indicates no relationship between C; and C;.

The graphical representation of a FCM has a mathematical for-
mulation. Values of concepts are fuzzy and arise from the transfor-
mation of the real values of the corresponding variables for each
concept, and also the values for the weights of the interconnections
among concepts are fuzzy. Then, in order to calculate the values of
the concepts, the following calculation rule is used:

N
A =FI AT+ DAY Ry 1)
Iz
Jj=1
where A"V is the value of concept C; at simulation step k + 1,A is
the value of concept (; at simulation step k, R;; is the weight of the
interconnection from concept C; to concept C; and f is a sigmoid
threshold function:
1
“Tien =
where 1 > 0 is a parameter that determines its steepness. In our ap-
proach, the value 2 =1 has been used. This function is selected
since the values A; lie within [0,1].

The value A; of the concept C; expresses the degree of its corre-
sponding physical value. At each simulation step, the value A; of a
concept C; is calculated by computing the influence of other con-
cepts C;’s on the specific concept C; following the corresponding
mathematical formulation.

Through iteratively multiplying the previous state vector by the
connection matrix, using standard matrix multiplication, new state
vectors are computed showing the effect of the activated concepts
(Pelaez & Bowles, 1996). After every multiplication, the values of
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the state vector are normalized by a non-linear function that al-
lows the vector elements to take a value within a predetermined
set of values. Commonly, the functions used allow the variables
to take values in {0, 1}, in {-1, 0, 1}, or in [-1, 1] (Tsadiras & Mar-
garitis, 1997). FCM inference goes on by non-linear spreading acti-
vation, which implies that the inference or prediction is a temporal
sequence of events or reverberating limit cycle (Kosko, 1992). Iter-
ation terminates when it reaches an equilibrium state and stops
yielding new data, or when a prearranged iteration count has been
reached (Taber, 1991).

2.1. Constructing FCMs

The development and construction method of FCM is of great
importance for its potential to sufficiently model a system. Pro-
posed methods are dependent on the group of experts who oper-
ate, monitor, supervise the system and they know its behaviour.
This methodology extracts the knowledge from the experts and ex-
ploits their experience of the system’s model and behaviour.

The number and kind of concepts are determined by a group of
experts that comprise the FCM model. An expert from his/her
experience knows the main factors that describe the behaviour of
the system; each of these factors is represented by one concept
of the FCM. Experts know which elements of the systems influence
other elements; they determine the negative or positive effect of
one concept on the others, with a fuzzy degree of causation for
the corresponding concepts. In this way, an expert transforms
his/her knowledge in a dynamic weighted graph, the FCM. Follow-
ing the developing methodology, experts are forced to think about
and then describe the existing relationship between the concepts
and thus justify their suggestions. Each expert, indeed, determines
the influence of one concept on another as “negative” or “positive”
and then evaluates the degree of influence using a linguistic vari-
able, such as “strong influence”, “medium influence”, “weak influ-
ence”, etc.

The causal inter-relationships among concepts are usually de-
clared using the variable Influence which is interpreted as a linguis-
tic variable taking values in the universe U=[-1, 1]. Its term set
T(influence) is suggested to comprise seven variables. Using seven
linguistic variables, an expert can describe in detail the influence of
one concept on another and can discern between different degrees
of influence. The seven variables used here are: T(influence) = {very
very low, very low, low, medium, high, very high, and very very
high}. The corresponding membership functions for these terms
are shown in Fig. 2 and they are: [, ty, Ui, s B P, AN .

The main concepts that represent the model of the system are
defined by experts; they describe the structure and the intercon-
nections of the network using fuzzy conditional statements. The
fuzzy IF-THEN rules that experts use to describe the relationship

M Hv [ Mm Mh
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among concepts assume the following form, where A and B are lin-
guistic variables:

IF value of concept C; is A THEN value of concept ¢; is B
and thus the linguistic weight e; is C

where A, B, C are linguistic variables (determined from the previous
membership functions) taking values in the range [0, 1].

Thus, each interconnection is described by an expert with a
fuzzy linguistic variable from the determined set, which associ-
ates the relationship between the two concepts and determines
the grade of causality between the two concepts. Then, the lin-
guistic variables C proposed by the experts for each interconnec-
tion are aggregated using the SUM method and so an overall
linguistic weight is produced which is defuzzified with the Centre
of Area method and finally a numerical weight for R; is calcu-
lated. Using this method, all the weights of the FCM model are
inferred.

2.2. Nonlinear Hebbian learning algorithm for FCMs

In this sub-section the Nonlinear Hebbian Learning (NHL) Algo-
rithm which was proposed to train FCM is described. The NHL algo-
rithm is used to overcome inadequate knowledge of experts and/or
non-acceptable FCM simulation results (Papageorgiou et al., 2003;
Papageorgiou & Groumpos, 2005). The weight adaptation proce-
dure is based on the Hebbian Learning rule for non-linear units
(Oja, Ogawa, & Wangviwattana, 1991). The nonlinear Hebbian-type
rule for ANNs learning have been adapted and modified for the
FCM case, and there was proposed the nonlinear Hebbian learning
(NHL) algorithm (Papageorgiou & Groumpos, 2005).

Through the NHL algorithm all the concepts in FCM model are
triggering synchronously at each iteration step. During this trigger-
ing process the weight wj; of the causal interconnection of the re-
lated concepts is updated and the modified weight wj’ is
calculated for iteration k.

The Eq. (1) is updated to Eq. (3) where the value A**" of C; con-
cept, at simulation step k + 1, is calculated, computing the influ-
ence of interconnected concepts with values A; to the specific
concept C; due to modified weights wj(.,.") at simulation step k:

N
(k+1) (k) (k) (k)

A =AY +) AT - wy (3)

=

j=1
Furthermore, during the development phase of FCM, experts se-
lect the Decision Output Concepts (DOCs) and they also define the
initial stimulators (factor concepts) or interior concepts (selector-
concepts) of the system. The distinction of FCM concepts as inputs,
intermediates and outputs is determined by the group of experts

M vh u- vvh

0 0.1 0.2 0.35 0.5 0.65

v

0.8 0.9 1
Influence

Fig. 2. The seven membership functions corresponding to each one of the seven linguistic variables.
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for each specific problem. The DOCs stand for the outputs of the
system that interest us, and we want to estimate their values,
which represent the final state of the system.

Taking the advantage of the general nonlinear Hebbian-type
learning rule for NNs, we introduce the mathematical formalism
incorporating this learning rule for FCMs, a learning rate parameter
and the determination of input and output concepts. This algo-
rithm relates the values of concepts and values of weights in the
FCM model.

The proposed learning rule Papageorgiou & Groumpos, 2005 has
the general mathematical form:

2
Aw = A VAT - wiD (AFY) 4)

Jji i
where the coefficient #, is a very small positive scalar factor called
learning parameter and is determined using experimental trial and
error method in order to converge fast the simulation process. A}") is
the value of concept Cj, which at next simulation step, k + 1, triggers
the interconnected concepts.

This simple rule states that if AE") is the value of concept C; at
simulation step k, and A; is the value of the concept C; that triggers
the concept C;, the corresponding weight from concept C; towards
the concept C; increases proportional to their product multiplied
with the learning rate parameter minus the weight decay at simu-
lation step k — 1, that is multiplied by the value A; of triggering
concept C;. All the FCM concepts are triggering at the same itera-
tion step and their values are updated synchronously.

Eq. (4) takes the following form of nonlinear weight adaptation
algorithm, if we introduce the y as weight decay parameter:

k) _ 7. WJ(_ikq) + nkAgkfl) (A]('kq) —sgn (W}!‘f]))w;:“])/‘\gkf])) (5)

where the 7, is the learning rate parameter and 7y is the weight de-
cay parameter.

The value of each concept of FCM is updated, through the Eq. (3)
where the value of weight w;!‘) is calculated using Eq. (5).

Only the initially non-zero weights suggested by experts are up-
dated for each iteration step through the NHL algorithm. All the

Take initial
coneept values
and weights

other weights of weight matrix W remain equal to zero, which is
their initial value.

Also, two termination conditions were proposed for the ter-
mination of the learning algorithm. One termination condition
is the minimization of function F;. The termination function F;
that has been proposed for the NHL examines the values of Deci-
sion Output Concepts (DOCs). It is supposed that for each DOC;,
experts have defined a target value T;. This target value can be
either the desired value when DOC; stand for a concept, which
has to take a value or the mean value when DOC; stand for a
concept whose value has to belong to an interval. Thus, the func-
tion F; is defined as:

where [ is the number of DOCs.

The second termination condition is the minimization of the
variation between two subsequent values of DOCs, represented
by equation:

= poCc*Y —poc¥| < e (7)

This termination condition helps to terminate the iterative pro-
cess of the learning algorithm. The term e (equal to 0.001 to be sat-
isfying the termination), is a tolerance level keeping the variation
of values of DOC(s) as low as possible.

Through this training process and when both the termination
conditions are met, the final weight matrix Wyy of FCM is
derived.

After a great number of experiments and implementation the
NHL algorithm in different domains, the upper and lower bounds
for the learning rate parameters y and # were determined (Papa-
georgiou & Groumpos, 2005). The flowchart of the proposed NHL
procedure implemented in FCMs is given in Fig. 3. It is mentioned
that if the learning procedure repeated for over 1000 iteration
steps without converge then it stops and experts are asked to
reconstruct the FCM.

Determine 7, |«

l

NHL
}
Experts asked Y‘Eh ~Tterations ™
to reconstruct k“>1000
FCM model
L Cunverge in \ no

-.\_ equilib. states within

e

“aa\ccepted huuicl;,

e

..

1 vas

Fig. 3. The flowchart of NHL algorithm.
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Fig. 4. Two of the yield maps (years 2001 and 2003) and some of the soil properties maps.

3. Materials and methods

In 2001, an experiment was established in a 5ha field at
Myrina, Karditsa prefecture, Central Greece. During the last 6
years, the field was cultivated with cotton (Gossypium hirsutum
L.) and the Celia cultivar. It was managed using spatially uni-
form applications and a series of measurements were made
each year.

Yield mapping was performed for the years 2001-06 using a
Farmscan™ yield monitor installed on a two row John Deere™ cot-
ton picker (Gemtos et al., 2004). After harvesting of the field was
completed, a calibration procedure was performed to improve
the yield estimation (Markinos et al., 2004).

In February 2002, a 16 x 26 m grid was formed in the north part
of the field (4.3 ha). Overall, 114 soil samples were taken at the grid
points at 0-30 cm depth. The samples were analyzed for texture, N,
P, K, pH, Mg, Ca, Na and organic matter.

In May 2006, a VERIS machine was used to measure the appar-
ent soil EC, at depths 0-0.30 and 0-0.90 m (Lund, Christy, & Drum-
mond, 1999) from which maps were generated. The machine was
pulled through the field at a speed of approximately 7 km/h at a
track spacing of 4 m. Data were recorded every 1 s.

The SSToolbox™ 3.61 software was used to store, represent, fil-
ter and analyze the acquired field data (SSToolbox, 2004). All the
collected data were interpolated in order to produce a map
(4.3 ha)ona 10 x 10 m grid size that corresponds to a reliable field
management unit (cell). The interpolation method of inverse dis-
tance was used for yield and EC due to dense data sampling, while
kriging was used for the soil properties maps of sparse spatial sam-
pling-grid (SSToolbox, 2004) (Fig. 4).

Data from 20 m strips around the field near the edges were fil-
tered and removed to avoid machinery compacted headlands with
lower yields. The data of every cell (10 x 10 m) of filtered maps
represent the data to be used as inputs in the FCM model simula-
tions with the yield from each year as output. Every cell of each in-
put map linked to a scalar value in the GIS database. Each
particular cell corresponding to the same spatial point represents
a vector of scalar values of respective measured soil parameters.
The last value in the vector represents the yield at this field point.
Every vector constitutes a record in the database extracted from
GIS.

The FCM model has been developed based on a raster data GIS
approach, i.e. the data are stored in a two-dimensional matrix that
represents the spatial distribution of every factor in the field. Each
cell of the matrix corresponds to an area of 10 x 10 m, which is the
spatial resolution of the yield data model. The data of every cell of

filtered maps represent the data that will be used as input vari-
ables in the proposed FCM model. Each one vector of the data re-
cord represents the initial concept values of the proposed FCM
model that interact through the FCM simulation process till an
equilibrium point or decision is reached. Each causal node or factor
of the FCM model represents a discrete layer or raster map in the
yield data model.

The FCM model was developed by experts (one experienced
cotton farmer and two experienced soil scientists) and the mea-
surement data were used to be categorized by the FCM tool into
two yield production categories. These data were the result of
three years of measurements (2001, 2003 and 2006) at the same
cotton field in Central Greece (Gemtos et al., 2004; Markinos
et al., 2004).

4. Fuzzy cognitive map model for describing cotton yield

To construct the FCM model for describing spatial variation in
cotton yield, three experts described below were used. The experts
designed the FCM model following the developing methodology
described in the previous section. The three experts were one
experienced cotton farmer and two experienced soil scientists,
one from Technological Educational Institute of Larissa, Greece
and the other from the Laboratory of Regional Soil Analysis and
Agricultural Applications of Larissa, Greece.

The three experts stated that there are eleven main factors -
variables (which represent soil properties) used to determine cot-
ton yield (see Table 1). These eleven are the main factors determin-
ing cotton yield and are well documented in the literature
(Galanopoulou, 2002).

The concepts of FCM and their ranges have been described qual-
itatively by experts and have been converted into fuzzy sets with
corresponding membership functions, given in Table 2. Then, the
initial values of concepts were transformed into the range [0, 1]
with quantification based on fuzzy sets theory (Jang, Sun, & Mizu-
tani, 1997).

The set of linguistic variables that every concept can take are
depicted in Table 2 and the corresponding membership functions
for the eleven soil parameters and cotton yield are illustrated in
Fig. 5.

Then, experts were asked to describe the degree of influence
between the concepts and they determined their inter-relation-
ships using the “IF-THEN” rules previously presented to infer a
linguistic variable (weight), representing the cause and effect
relationship between every pair of concepts. Three linguistic vari-
ables have been proposed by the three experts for each intercon-
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Table 1
Concepts of the FCM model.
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Concepts Description: soil factors measured over 0-300 mm soil depth Type and number of scaled values
C1: ShallowEC Soil shallow electrical conductivity Veris (mS/m) Five fuzzy

C2: Mg Magnesium (ppm) Five fuzzy

C3: Ca The measured calcium in the soil in depth 0-30 cm (ppm) Five fuzzy

C4: Na The measured Na (Sodium) in the soil in depth 0-30 cm (ppm) Five fuzzy

C5: K The measured Potassium in the soil in depth 0-30 cm (ppm) Five fuzzy

C6: P The measured Phosphorus in the soil in depth 0-30 cm (ppm) Five fuzzy

C7:N The measured NOs in the soil profile of 0-30 cm (ppm) Five fuzzy

C8: OM The % Organic matter content in soil profile in depth 0-30 cm Three fuzzy

C9: Ph The pH of the soil in depth 0-30 cm Seven fuzzy

C10: Sand The % of the sand in the soil samples in depth 0-30 cm Four fuzzy

C11: Clay The percentage % of the clay in samples in depth 0-30 cm Three fuzzy

C12: Yield Seed cotton yield from 1st picking measured by yield monitor (t/ha) Three fuzzy

Table 2

Qualitative description (type) of each one of FCM concepts values.

C1: ShallowEC (mS/m) C2: Mg (ppm) C3: Ca (ppm) C4: Na (ppm)

Five fuzzy Five fuzzy Five fuzzy Five fuzzy

0-10 Very low <60 Very low <400 Very low <25 Very low
10-20 Low 60-180 Low 400-1000 Low 25-70 Low
20-30 Medium 181-360 Medium 1001-2000 Medium 71-160 Medium
30-40 High 361-950 High 2001-4000 High 161-460 High
>40 Very high >950 Very high >4000 Very high >460 Very high
C5: K (ppm) C6: P (ppm) C7: N (ppm) C8: OM (ppm)

Five fuzzy Five fuzzy Five fuzzy Three fuzzy

<40 Very low <5 Very low <3 Very low <1.0 Low
40-120 Low 5-15 Low 3-10 Low 1.0-2.0 Medium
121-240 Medium 16-25 Medium 11-20 Medium >2.0 High
241-470 High 26-45 High 21-40 High

>470 Very high >45 Very high >40 Very high

C9: Ph C10: Sand (%) C11: Clay (%) C12: Yield (tons/ha)

Seven fuzzy Four fuzzy Three fuzzy Three fuzzy

<4.5 Very low <20 Low <15 Low <25 Low
4.6-5.5 Low 20-70 Medium 15-37 Medium texture 2.5-3.5 Medium
5.6-6.5 Sl. Low 71-80 High >37 High >3.5 High
6.6-7.5 Neutral >80 Very high

7.6-8.5 SI. High

8.6-9.5 High

>9.5 Very high

nection. These three linguistic weights are aggregated using the
SUM method and so an overall linguistic weight is produced
which is defuzzified with the Centre of Gravity method and final-
ly a numerical weight for R; is calculated. The advantage of this
methodology is that experts do not have to describe the causality
relationships using numerical values, but rather to describe qual-
itatively the degree of causality between concepts. The fuzzy rule
for each interconnection is evaluated using fuzzy reasoning and
the inferred fuzzy weight is defuzzified using the Center of Grav-
ity defuzzification method. Thus the initial weight matrix of the
FCM is assigned.

The three experts suggested that the degree of influence be-
tween concepts was described by a linguistic variable taking a va-
lue in [0, 1] and its fuzzy set defined in previous section (shown in
Fig. 2). It is noticeable that these membership functions have a fi-
ner distinction between grades in the lowest and highest end of the
influence scale.

Two examples for the specific problem of yield trend descrip-
tion in cotton are given:

IF a small change occurs in the value of concept Cg (organic
matter) THEN a small change in the value of concept Cy; (cotton
yield) is caused.

This means that: the influence from concept Cg-Cy, is low.

IF a high change occurs in the value of concept C; (ShallowEC)
THEN a very high change in the value of concept C;, (cotton yield)
is caused.

This means that: the influence from concept C;-C;; is very high.

The three experts were asked to describe the degree of influ-
ence from one concept to another using “IF-THEN” rules among
factor concepts and yield. All fuzzy rules were pooled by ex-
perts for each interconnection of FCM and were gathered in Ta-
ble 3. In this table, only the different suggestions of the second
and third expert were presented according to the first expert
fuzzy rules.

These fuzzy rules for each causal relationship were aggregated
using the approach described by Stylios and Groumpos (2004)
and so an overall linguistic rule was produced from which through
the SUM fuzzy inference method, a numerical weight for R; was
calculated (see Eq. (8)). Using this, the weights of the FCM model
were inferred and the FCM was developed (see Fig. 7).

To illustrate how numerical values of weights have been pro-
duced, the following example is given. The three experts have de-
scribed the interconnection between concept Cs (Potassium) and
concept Cq; (yield) using the following rules:
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Fig. 5. Membership functions for ShallowEC, Mg, Ca, Na, K, P, N, OM, Ph, Sand, Clay and Yield.



Table 3

Fuzzy rules relating yield factors to yield.
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Factor concept

First expert

Second expert
(only
where different)

Third expert
(only

where
different)

C;: Shallow EC
(EC)

C,: Magnesium
(Mg)

Cs: Calcium (Ca)

Cy4: Sodium (Na)

Cs: Potassium (K)

Cgs: Phosphorous
(P)

Cs: Nitrogen (N)

Cg: Organic matter
(OM)

Co: Ph

Cyo: Sand (S)

Cq1: Clay (Cl)

IF EC is VL Then Y is L
IFECis L ThenY is M

IF EC is M Then Y is M
IFECisHThenY is M

IFECis VH Then Y is H
IF Mg is VL Then Y is L
I[FMgis LThenYisL

IF Mg is M Then Y is H
IF Mg is H Then Y is H

IF Mg is VH Then Y is
M
IF Cais VL Then Y is L

IFCaisLThenYisL
IF Cais M Then Y is H
IF Cais HThen Y is M

IF Cais VHThen Y is M
IF Na is VL Then Y is H

IF Na is L Then Y is M
IF Nais M Then Y is L
IF Nais H Then Y is L
IFNais VHThenYis L
IF Kis VL Then Y is VL
IFKis LThen Yis L
IFKis M Then Y is M
IF K is H Then Y is M
IF K is VH Then Y is H

IF P is VL Then Y is L
IFPis L Then Yis L

IF P is M Then Y is M
IF Pis H Then Y is M

IF P is VH Then Y is H

IF Nis VL Then Y is L
IFNisLThenYis L

IF Nis M Then Y is M
IF N is H Then Y is H

IF N is VH Then Y is H

IFOM is L Then Y is L
IFOM is M ThenY is M
IFOM is H Then Y is M

IF Ph is VL Then Y is L
IF Phis L Then Y is L
IF Ph is SL Then Y is M

IF Ph is M Then Y is M
IF Phis SH Then Y is H
IF Ph is H Then Y is M

IF Phis VH Then Y is L
IFSis LThen Y is M

IF Sis M Then Y is H

IFSis H Then Y is L
IF Sis VH Then Y is L
IFClis LThenYis L
IF Cl is M Then Y is M
IF Clis H Then Y is H

IFECis L ThenY
isL

IF Mg is H Then
Yis M

IF Cais M Then Y
is M

IF Cais H Then Y
isL

IF Ca is VH Then
YisL

IFKis VH Then Y
isM

IF N is H Then Y
is M

IF OM is H Then

Yis M

IF Ph is SL Then
YisL

IF Ph is H Then Y
isL

IF Sis M Then Y
isM

IF Cl is H Then Y
isM

IF EC is L Then
YisL

IF EC is H Then
Yis H

IF Mg is L Then
Yis M

IF Mg is H
Then Y is M

IF Na is VL
Then Y is M

IF K is VH Then
Yis M

IFPisHThenY
isH

IF P is VH Then
Yis M

IF N is VH Then
Yis M

IF OM is H
Then Y is H

IFSis L Then Y
isH

IF Cl is H Then
Yis M
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1st Expert

IF value of concept Cs is med THEN value of concept Ci, is med
Infer: The influence from concept Cs towards concept C;, is med

2nd Expert

IF value of concept Cs is med THEN value of concept Cy; is high
Infer: The influence from concept Cs towards concept C;; is high

3rd Expert:

IF value of concept Cs is high THEN value of concept Cq, is very
high

Infer: The influence from concept Cs towards concept C;; is
very high

Fig. 6 illustrates the three suggested linguistic variables for this
particular problem example.

These linguistic variables (med, high and very high) were
summed and an overall linguistic weight was produced (also in
Fig. 6) which, through the defuzzification method of Centre of
Gravity (COG), was transformed into the numerical value of
Rs_12 = 0.65 (weight value from concept Cs towards concept Ci3).

The same approach was used to determine all the weights of the
FCM model. A weight matrix R™" gathering the initially suggested
weights of all the interconnections among the concepts of the FCM
model was produced.
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The developed FCM model is presented in Fig. 7.

The procedure referred to is based on the determination of the
value of output concept “Yield” that represents the percentage of
cotton yield from the 1st picking measured with the yield monitor.
The concept values correspond to the soil factor values measured
over a depth of 0-30 cm.

5. Results and discussion

The initial values of concepts are transformed into the range [0,
1], with quantification based on fuzzy sets theory, for the simula-
tion of FCM (Jang et al., 1997).

The FCM simulates through Eq. (1) and the new values for con-
cepts are calculated till the FCM tool for describing cotton yield trend
reaches an equilibrium point (steady state for the specific set of con-
cepts) where the values of concepts do not change any more from
their previous ones. After these limited number of interactions for
the FCM convergence, the value A, of concept C;, represents the
category or the classification degree for the case of cotton yield.

In this point, it is essential to refer that the three experts also
determined a threshold value equal to 0.85 to discriminate two
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b First Experﬁ
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Second Expert

0.5 0.8
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0.65 0.9 /

Membership 4
Function

Aggregation of Linguistic variables using SUM

0.6 v 1

0.65 Influence

Fig. 6. Aggregation of three linguistic variables using the SUM technique. Point C is the numerical weight after defuzzification using the CoG method.

Fig. 7. The FCM model for describing the final cotton yield.

different categories for the seed cotton yield production. More
specifically, the experts suggested that yield value higher than
85% of desired cotton production could be considered as high
cotton production. In our approach this was translated as
follows:

If the estimated “yield” value (A;,) is less than 0.85 (A;> < 0.85),
which means that the yield production is less than the 85% of de-
sired cotton production, then “yield” is categorized as “low”. If the
estimated “yield” value (A;2) is higher than 0.85 (A, > 0.85), then
“yield” is categorized as “high”.

Three different cases have been examined to evaluate the pro-
posed methodology based on FCMs for determining category of
cotton production.

First case: In this case, the initial fuzzy values of the concepts
which correspond to low yield production (as they have been mea-
sured and converted to the corresponding fuzzy sets), are the
following:

C1 c2 3 4 G5 €6 C7 C8 (C9 cC10 cC11
Very low high med low med med low low Low med high

The following vector is used for the FCM simulation process and
describes the numerical values of initial concepts after their quan-
tification through fuzzy logic:
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A'=[01 075 07 04 05 05 02 0 03 05 0.7 0

These values represent the real data of the physical process and
the initial value of yield production is set equal to zero. These val-
ues are used in Eq. (1) to calculate the equilibrium region of the
process. After 11 iteration steps, the FCM reaches an equilibrium
state, where the values do not change any more from their previ-
ous ones. This state is:

12409

Cy, is 0.8226, which means that, in this region, the yield is less than
the threshold value 0.85 which has been considered by experts to
discriminate two different categories for the yield based on the 85%
of the acceptable seed cotton production. Actually, for this case, the
measured yield production was “low” as the initial values corre-
sponded to low cotton production, so that the derived result of
the FCM model is the expected one according to the real measure-
ments (“low” yield).

A1 — [0.7201 0.7500 0.7548 0.4000 0.5000 0.5000 0.2000 0 0.7390 0.5000 0.7000 0.8226]

Fig. 8 depicts the subsequent values of calculated concepts for

every simulation step. It is observed that the final value of concept

Second case: Here the initial measured fuzzy values of the con-
cepts are the following:
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Fig. 8. Subsequent values of concepts for first case till convergence.
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Fig. 9. Subsequent values of concepts for second case till convergence.
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C1 2 3 ¢4 G5 C6 C7 €8 (9 cC10 C11

Very low low med low med med low low low med high

The initial values of concepts for this case are determined in the
following vector:

A>=1[01 025 02 04 05 05 02 0 03 05 07 0

These values with the corresponding FCM weights are used in
Eq. (1) to calculate the equilibrium region of the process. After
12 iteration steps, the equilibrium region is reached:

A2 — [0.7201 0.2500 0.7548 0.400 0.500 0.5000 0.2000

Fig. 9 gives the subsequent values of calculated concepts. In this
case, it is observed that the value of concept Cy, (“yield”) in final
state is 0.8539, which means that the yield is “high” according to
the previous referred threshold value of 0.85. This means that
the estimated result is the accepted one.

Third case: For this case, the initial fuzzy values of the concepts
have been selected from real measurements and have been corre-
sponded to high yield production:

1 c3 c4 G5 Cc6
low high med low med med

Cc7 (8 c9 C10 C11
low med med med high

The initial vector for the concept values is:

A’=[04 075 07 04 05 05 02 1 05 05 07 0

This vector represents the real data of the physical process.
Then, using Eq. (1), the FCM simulates and after 12 iteration steps,
the equilibrium region is reached in the following vector:

A3 — [0.8073 0.7500 0.7548 0.400 0.5000 0.5000 0.2000
0 0.739 0.5000 0.7000 0.8824]

Fig. 10 gives the subsequent values of calculated concepts. Actu-
ally, for this case, the measured yield production was “high”. It is
observed that the calculated value of concept C;, in final equilib-

1 T T T T
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rium point is 0.8824, which means that the yield is higher than
the 0.85 so that it can be considered as “high” yield. The derived
result is the expected one according to the real measurements
for high cotton production.

According to the above cases, the concept “yield” could be con-
sidered to take two possible values, either “low” when its esti-
mated output value of yield is less than the value of 0.85 and
“high” when the respected estimated output value is greater than
0.85.

The FCM tool was evaluated for 360 cases using the data of 2001
in order to calculate the average accuracy of the yield production.
For these experiments, two categories of “low” and “high” yield,
respectively were considered. For decision making reasons, the

00.739 0.5000 0.7000 0.8539]

threshold value has been selected equal to 0.85 by the three ex-
perts to discriminate the two yield categories — “low” and “high”.

This means that if the calculated output values of yield are low-
er than 0.85 then the produced yield is “low” and vice versa. The
estimated value of the output concept - “yield” is essential and it
categorizes the cotton yield production as “low” and “high” using
a simple discrimination method presented in (Papageorgiou
et al., 2006).

For year 2001, the average accuracy is 73.8% which is efficient
for this problem using the soft computing technique of FCMs. For
the 182 cases of low yield, 135 were characterized as “low” yield
and the rest as “high” yield, and for the 178 cases of high yield,
131 were characterized as “high” yield and the others as “low”
yield.

The same FCM model was used with the same threshold value
for the evaluation procedure to estimate the yield output for the
years 2003 and 2006. The results for the three years of 2001,
2003 and 2006, are gathered in Table 4.

The yield prediction process in Precision Agriculture is depicted
on the proposed flowchart which describes the procedure for tak-
ing the decision that actually determines the cotton production
according to the available knowledge/data (see Fig. 11).

Implementing the NHL algorithm the FCM tool increases its
ability to handle the available knowledge and to reach an
acceptable decision. The FCM simulates using Eq. (3) and the
weights were updated in every step till the convergence region.
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Fig. 10. Subsequent values of concepts for third case till convergence.
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Table 4

Average accuracy for three years (2001, 2003 and 2006).

Accuracy/year 2001 (%) 2003 (%) 2006 (%)

Low yield (135/182):74.18 (126/185):67.57 (103/174):59.20
High yield (131/178):73.60 (117/175):66.86 (149/186):80.10
Average accuracy 73.80 67.20 69.65

Table 5 gathers the accuracies implementing the NHL algorithm for
“low” and “high” yield categories for the three respective years of
2001, 2003 and 2006. The proposed FCM model has achieved a suc-
cess of 75.55%, 68.86% and 71.32%, respectively for the years re-
ferred, in estimating/predicting the yield class between the two
possible categories.

Training FCM with the NHL algorithm enhance the FCM model
and incorporate the expert’s knowledge into a proper FCM model
of the process or system. It seems from the results that the FCM
model for cotton yield management constructed by the experts’
knowledge and enhanced by the NHL training technique works
efficiently succeeding acceptable decisions for the users. Besides,
this tool keeps transparency of the model and interpretability of
the results. In our opinion using this fuzzy rule-based management
process for cotton yield in the education process, provides a more
useful environment for the practitioners than huge, hard-covered
materials. It is less time consuming and easy for use for no
specialists.

FCM, unlike data driven models, is built on human expertise.
Moreover, its robustness does not depend on any training proce-
dure which is biased to the size of the available data sets and fea-
ture space dimensionality. However, we agree that the selection of
FCM concepts (number and type of variables used in decision mak-
ing), is a very important issue in model’s design. Contrarily to cur-
rent computerized support decision approaches which construct
their diagnostic model only from available data, FCMs try to repre-
sent and model, the human knowledge and expertise in decision
making.

Knowledge/Data

A 4
Number & Type of factors-

Experts’ concepts,_ )
Fuzzy logic Rules for yield

Knowledge parameters K, P, Mg, N, pH,
e.tc

»| FCM construction

l

A

| FCM simulation

Output
values of
“Yield”

Discriminant

Analysis
Y No

Decision
(cotton production)

Fig. 11. Flowchart of the cotton yield trend estimation process in precision
agriculture.
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Table 5
Average accuracy for three years implementing NHL algorithm (2001, 2003 and
2006).

Accuracy/year 2001 (%) 2003 (%) 2006 (%)

Low yield (138/182):75.82 (129/185):69.73 (106/174):60.91
High yield (134/178):75.28 (119/175):68.00 (152/186):81.72
Average accuracy 75.55 68.86 71.32

Through the literature, more studies have used statistical anal-
ysis techniques and only a few have used computational intelligent
algorithms to classify and predict cotton yield from large datasets
(Canteri et al., 2002; Liu et al., 2001; Miao et al., 2006). Due to the
different data set it is not straightforward and possible to compare
our results with those from different case studies and techniques.
We only compare the results of the FCM tool with and without
the unsupervised learning algorithm of NHL. The proposed FCM
simulation model can be enhanced by the NHL algorithm and it
simulates efficiently to estimate yield with reasonably high overall
accuracy, sufficient for this specific application area.

The advantages of FCMs derive from their ability to elicit and
compare the perceptions of different stakeholder experts, and to
unify their viewpoints and understanding of a complex system;
in this case, precision agriculture. The method can be used to inte-
grate perspectives of both lay and expert participants; mobilizing
scientific and non-scientific knowledge, values and preferences to
evolve a complex and unstructured problem into a range of identi-
fiable, albeit artificial consensus solutions. A significant advantage
is that FCM does not require the direct interaction of the individu-
als or parties involved.

There are some general limitations of the FCM model i.e. it re-
lates to the absence of any underlying theoretical structure for
scoring preferences and explicitly conveying the heuristic values,
motives and perspectives of experts. This subjectivity increases
where the participants are unfamiliar with the method and the
FCMs are not accompanied with additional information. Thus,
our recent studies are directed towards this direction to accom-
pany the construction methodology of FCMs with additional infor-
mation from data in the form of “IF-THEN” rules by extracting the
available knowledge using data mining algorithms (Papageorgiou
and Groumpos, 2007; Witten & Frank, 1999).

6. Conclusion

A new modeling and simulation approach based on the soft
computing technique of FCMs was introduced to address the issue
of crop yield prediction. The new modeling methodology using the
FCM tool was applied for the complex process of site specific man-
agement. This soft computing technique is an advanced knowledge
representation and processing method that can handle the main
characteristics and site specific management behavior of the cot-
ton crop yield providing an interpretable and transparent model.

It was demonstrated that FCMs can be a useful tool for captur-
ing the stakeholders’ understanding of the system and their per-
ceptions on the cotton yield requirements of the precision
agriculture. The main advantage of the proposed FCM decision
making tool in precision agriculture is the sufficient simplicity
and interpretability for farmers in decision process, which make
it a convenient consulting tool in determining cotton production.
With the interpretation of obtained results according to actual
states, a more accurate and quick decision can be made.

This work was not intended to generate novel descriptions and
predictions of cotton production but rather to create a simulation
tool to help soil scientists to select soil parameters for the desired
cotton production.
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Our future work will be directed towards the insertion of new
factors and weather conditions into the FCM model and the exten-
sion of the FCM model to work with different soil properties (for
example alkaline soils). These could lead to an integrated decision
support system which enhance its operation and efficiency and
estimate the yield production of every field.
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