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Abstract

In this paper, the transient stability of multimachine power systems based on structure preserving model (SPM) is considered. The
interconnection and damping assignment passivity-based control (IDA-PBC) methodology is extended to solve the excitation regulation
problem of SPM represented by a set of differential-algebraic equations. By shaping the total energy function via the introduction of a
virtual coupling between the electrical and the mechanical dynamics of the power system, a decentralized excitation control law is pro-
posed to ensure the asymptotic stability of the closed-loop system. The controller is proved to be effective in damping the oscillations and
enhancing the system stability by the results of simulation research.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Increasing attention has been devoted to enhancing the
stability of power systems, which are characterized by high
nonlinearity and influenced by external disturbance. Given
the highly nonlinear nature of the power system models,
the applicability of linear controller design techniques is
severely restricted. Application of nonlinear control
method to enhance power system transient stability has
attracted much attention. Some achievements using nonlin-
ear control theories including the feedback linearization
[1,2] have been accomplished in the past with varying
degree of success. These control laws were able to display
optimal property, however, the physical meaning is not
clear, which has motivated recent works on energy related
design techniques [3–8]. The main characteristic of these
methods is that the physical structure (Lagrangian or Ham-
iltonian) is preserved in closed-loop. This has the advan-
tage that the closed-loop energy function can be used as
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Lyapunov (or storage) function and this render the stabil-
ity analysis more transparent. Recently, an interconnection
and damping assignment passivity-based control (IDA-
PBC) methodology has been introduced into the nonlinear
control domain of power system [5] and yielded many the-
oretical extensions and practical applications [9–12]. Anal-
ogously to ‘‘standard’’ PBC, the new methodology is based
on energy-shaping and passivation principles, but attention
is now focused on the interconnection and damping struc-
tures of the system. The total energy is shaped via modifi-
cation of energy transfer between the mechanical and
electrical components of the system.

In most of the energy based designs of excitation con-
troller, the methods are employed to the lossless network
reduction models represented by a set of ordinary differen-
tial equations (ODE). And the synchronous machines are
modeled with the classical flux-decay model [13], i.e. quad-
rature axis synchronous reactance equal to the direct axis
transient reactance. While the transmission system itself
can be modeled as being lossless without loss of accuracy,
the transfer conductance arising from the load impedances
is impermissible to be neglected. The classical network
reduction of the load buses renders the negligible transfer
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conductances assumption highly unsatisfactory [13,14].
Neglect of transfer conductances leads to a bias in stability
estimates of unknown magnitude and direction. Even for
the simple swing equation model, the standard energy func-
tion of a lossless system cannot be extended to a lossy sys-
tem [15]. But it is hard to prove that the energy function
with the effect of the transfer conductance qualifies as a
Lyapunov function. This limitation can be overcome by
the use of structure preserving models (SPM) [16–18] which
include the full network topology, constant real power and
static voltage dependent reactive power loads, higher order
generator models. Also these models enjoy a lot of other
advantages [19,20].

This article concerns an extension of the IDA control to
solve the regulation problem of SPM, which are represented
as a set of nonlinear differential-algebraic equations (DAE).
The structure of the network is in its original form and the
generators are represented by the one-axis model [18]. As
usual in IDA designs, a key step in the construction is the
modification of the energy transfer between the electrical
and the mechanical parts of the system which is obtained
via the introduction of state-modulated interconnections.
An asymptotically stabilizing law is used to design the exci-
tation controller of structure preserving models.

The remaining of this paper is organized as follows. In
Section 2, the modified version of IDA technique for non-
linear differential-algebraic system (NDAS) is presented.
This method is applied to the structure preserving power
system, and excitation control law is designed to ensure
the stability in Section 3. A three-machine simulation study
is presented in Section 4 showing the effect on the enhance-
ment of transient stability.
 64

2. Interconnection and damping assignment control of

nonlinear differential-algebraic system

Consider the following affine nonlinear differential-alge-
braic system:

_x ¼ f ðx; zÞ þ Gðx; zÞu
0 ¼ rðx; zÞ

ð1Þ

where x = (x1,x2, . . . ,xn)T 2 Rn is the state (differential)
vector, z = (z1,z2, . . . ,zl)

T 2 Rl is the constraint (algebraic)
vector, and u = (u1,u2, . . . ,um)T 2 Rm is the input vector.

We assume that f,G,r are sufficiently smooth in some
open connected set X 2 Rn · Rl, and the Jacobian of r with
respect to z has full rank on X:

rankðozrðx; zÞÞ ¼ l; 8ðx; zÞ 2 X ðA1Þ
where ozr(x,z) = or/oz.

Further, the system possesses equilibrium in
X :$(x*,z*) 2 X, such that

f ðx�; z�Þ ¼ 0; rðx�; z�Þ ¼ 0 ðA2Þ
Proposition 1. Suppose (A1) and (A2) hold and if there exist

a C1 function Hd(x,z) :Rn · Rl! R with an isolated min-
imum at the equilibrium (x*, z*), a n · n skew-symmetric

matrix Jd(x, z) = �Jd(x, z), a n · n semi-positive definite

symmetric matrices Rdðx; zÞ ¼ RT
d ðx; zÞP 0 and two matrix

function A(x,z) = [aij(x,z)]l·l, B(x, z) = [bij(x,z)]l·m satisfy

the following partial differential equations (PDE) on the

open set X:

G?ðx; zÞf ðx; zÞ ¼ G?ðx; zÞ½Jdðx; zÞ � Rdðx; zÞ�oxHdðx; zÞ
ð2aÞ

ozHdðx; zÞ ¼ Aðx; zÞrðx; zÞ þ Bðx; zÞGTðx; zÞoxH dðx; zÞ
ð2bÞ

where G?(x, z) is a left annihilator of G(x, z), i.e. G?(x, z)

G(x,z) = 0. The notation oxHd is defined by oxHd =

[ox1Hd, . . . ,ox nHd]T

The closed-loop system (1) will takes the port-controlled

Hamiltonian (PCH) form

_x ¼ ½Jdðx; zÞ � Rdðx; zÞ�oxH dðx; zÞ þ Gðx; zÞu0

0 ¼ rðx; zÞ
ð3Þ

and be stabilized with control law

uðx; zÞ ¼ aðx; zÞ þ u0 ð4Þ
where

aðx; zÞ ¼ ½GTðx; zÞGðx; zÞ��1
GTðx; zÞ

� f½Jdðx; zÞ � Rdðx; zÞ�oxH dðx; zÞ � f ðx; zÞg
u0 ¼ �Sign½oT

x Hdðx; zÞGðx; zÞ�BTðx; zÞ�_z
B ¼ ½jbij j�l�m;

�_z ¼ ½j _z1j; . . . ; j _zl j�T

Sign(Æ) is a sign function defined as SignðSÞ ¼
signðs1Þ

. .
.

signðsnÞ

3
75, S = [s1, . . . , sn] and sign(si)=1,

if si > 0; sign(si)=0, if si = 0; sign(si) = �1, if si < 0 .

It will be asymptotically stable if, in addition, the largest

invariant set contained in

fðx; zÞ 2 Rn�ljoT
x H dðx; zÞRdðx; zÞoxH d ¼ 0; rðx; zÞ ¼ 0g

ð5Þ
equals {(x*,z*)}.

Proof. Setting up the right hand side of (1), with
u = a(x,z) + u 0, we get the matching equation

½Jdðx;zÞ�Rdðx;zÞ�oxHdðx;zÞþGðx;zÞu0 ¼ f ðx;zÞþGðx;zÞu
ð6Þ

Multiplying on the left by G?(x,z) we have the PDE (2a).
The expression of a(x,z) is obtained multiplying on the

left by the pseudo inverse of G(x,z).
Along the trajectories of (3), we have

_Hdðx; zÞ ¼ �oT
x H dðx; zÞRdðx; zÞoxHdðx; zÞ

þ oT
x H dðx; zÞGðx; zÞðu0 þ BT ðx; zÞ _zÞ

6 �oT
x H dðx; zÞRdðx; zÞoxHdðx; zÞ ð7Þ
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Since Rd(x,z) P 0, in accordance with the Lyapunov
stability definition, the function Hd(x,z) qualifies as a
Lyapunov function for the equilibrium (x*,z*). Asymptotic
stability follows immediately invoking LaSalle’s invariance
principle and the condition (5).

The derivative of state variable is often undesired in the
control of power system. So if the elements of B and the
derivative of state variable zi are bounded, i.e.

jbijðx; zÞj 6 /ij; j_zij 6 mi ði ¼ 1; . . . ; l; j ¼ 1; . . . ;mÞ
ð8Þ

the control law can be changed to the form

uðx; zÞ ¼ ½GTðx; zÞGðx; zÞ��1
GTðx; zÞf½Jdðx; zÞ

� Rdðx; zÞ�oxH dðx; zÞ � f ðx; zÞg
� Sign½oT

x Hðx; zÞGðx; zÞ�UTm ð9Þ

where U = [/ij]l·m, m = [m1, . . . ,ml]
T.

Jd(x,z)and Rd(x,z), which represent the desired inter-
connection structure and dissipation, respectively. They are
selected by the designer. Hd(x,z), the desired total stored
energy, may be totally, or partially, fixed provided we can
ensure the minimum at the equilibrium. h
3. Excitation controller design of structure preserving model

In this section, we consider the problem of transient sta-
bility of a large-scale power system. The result presented in
Section 2 is applied to design the excitation controllers.

A power system with n machines, n + m + 1 buses and
nonlinear voltage dependent loads is studied [7]. All gener-
ators are represented by the one-axis E0q model. The
mechanical torque is assumed to be constant. The resis-
tance of the transmission lines is eliminated. Buses from
1 to n are the terminal buses of the generators. Bus n + 1
is an infinite bus. Bus from n + 2 to n + m + 1 are the load
buses. The node admittance matrix is Y = [Yij] = [jBij],
where Bij is the susceptance of the line connecting bus i

and j. The voltage phasor of the ith Bus is expressed as,
Vi\hi. All phase angles are measured relative to the infinite
bus.

The real and reactive power demand at the ith load bus
are P d

i and Qd
i . The real power is represented as a constant,

and the reactive power is depended on the voltage of the
bus, i.e. Qd

i ¼ Qd
i ðV iÞ.

The dynamic of ith machine including flux-decay is
described by the one-axis model

_di ¼ xi � x0

Mi _xi ¼ x0 P mi � P ei �
Di

x0

ðxi � x0Þ
� �

T 0d0i

xdi � x0di

_E0qi ¼ Kiðdi;E0qi; hi; V iÞ þ
1

xdi � x0di

Efi; i ¼ 1; . . . ; n

ð10Þ
where

P ei ¼
x0di � xqi

2xqix0di

V 2
i sinð2ðdi � hiÞÞ þ

1

x0di

E0qiV i sinðdi � hiÞ

Kiðdi;E0qi; hi; V iÞ ¼ �
xdi

x0diðxdi � x0diÞ
E0qi þ

1

x0di

V i cosðdi � hiÞ

di is rotor angle, xi the rotor angle speed, x0 = 2pf0 the
synchronous machine speed, f0 the synchronous frequency,
Di the damping constant, Mi the inertia constant, xdi, xqi

the direct and quadrature axis synchronous reactance, x0di

the direct axis transient reactance, E0qi the quadrature axis
voltage behind transient reactance, Pmi the mechanical
power, T 0d0i the direct axis transient open-circuit time
constant, Efi the input of the exciter.

At the ith generator terminal buses, i = 1, . . . ,n, we get

0 ¼ gi ¼
x0di � xqi

2x0dixqi
V 2

i sinð2ðhi � diÞÞ

þ 1

x0di

E0qiV i sinðhi � diÞ þ
Xnþmþ1

j 6¼i

V iV jBij sinðhi � hjÞ

ð11Þ

0 ¼ hi ¼ V �1
i

"
x0di þ xqi

2x0dixqi
V 2

i �
1

x0di

E0qiV i cosðhi � diÞ:

� x0di � xqi

2x0dixqi
V 2

i cosð2ðhi � diÞÞ � BiiV 2
i ð12Þ

�
Xnþmþ1

j 6¼i

V iV jBij cosðhi � hjÞ
#

At the ith load terminal buses, i = n + 2, . . . ,n + m + 1, we
get

0 ¼ gi ¼
Xnþmþ1

j 6¼i

V iV jBij sinðhi � hjÞ þ P d
i ð13Þ

0 ¼ hi ¼ V �1
i �BiiV 2

i �
Xnþmþ1

j 6¼i

V iV jBij cosðhi � hjÞ þ Qd
i ðV iÞ

" #

ð14Þ
The system under study can be described as following com-
pact vector form:
_d ¼ x� x0

M _x ¼ x0 Pm � Pe �
D

x0

ðx� x0Þ
� �

T 0d0

xd � x0d
_E0q ¼ Kðd;E0q; h;VÞ þ

1

xd � x0d
Ef

0 ¼ gðd;E 0q; h;VÞ
0 ¼ hðd;E0q; h;VÞ

ð15Þ

The choice of the desired matrices Jd and Rd is based on
physical considerations. Injecting additional damping into
the electrical variable E0qi is easily achieved feeding back
oH=oE0qi [7]. On the other hand, it can be seen that the
damping in the mechanical coordinates (di,xi) is weak,
since D is usually very small. Furthermore, if the intercon-
nection matrix Jd does not contain any coupling between
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the electrical and the mechanical dynamics, the propaga-
tion of the damping injected in the mechanical coordinates
is far from obvious. This suggests the new interconnection
and damping matrices

J i ¼
0 x0

Mi
0

� x0

Mi
0 J i1

0 �J i1 0

2
64

3
75; Ri ¼

0 0 0

0 x0Di

M2
i

0

0 0 kei

2
64

3
75 ð16Þ

where Ji1 is unknown and will be fixed by solve the Eq.
(2a).

Here the energy function is given

H dðx; zÞ ¼ H 1ðx; zÞ þ H 2ðx; zÞ ð17Þ

where H 1 ¼
Pn

i¼1
ci
2

E0qi � E0�qi þ ki1½V i cosðdi � hiÞ � V �i cos
h

ðd�i � h�i Þ�
i2

,

H 2 ¼
Xn

i¼1

Mi

2x0

ðxi � x0Þ2 þ
Xn

i¼1

1

2x0diki1
E0qi � E0�qi

� �2

�
Xn

i¼1

P miðdi � d�i Þ �
Xn

i¼1

ðx0di � xqiÞ
4x0dixqi

½V 2
i cosð2ðdi � hiÞÞ

� V �2i cosð2ðd�i � h�i ÞÞ� þ
Xn

i¼1

x0di þ xqi

4x0dixqi
ðV 2

i � V �2i Þ

�
Xn

i¼1

E0�qi

x0di

½V i cosðdi � hiÞ � V �i cosðd�i � h�i Þ�

þ
Xnþmþ1

k¼nþ2

P d
k ðhk � h�kÞ þ

Xnþmþ1

k¼nþ2

Z V k

V �k

1

V
Qd

k ðV ÞdV

� 1

2

Xnþmþ1

i¼1;i6¼nþ1

Xnþmþ1

j¼1

�
V iV jBij cosðhi � hjÞ

� V �i V �j Bij cosðh�i � h�j Þ
�

� 1

2

Xnþmþ1

i¼1;i6¼nþ1

½V iV nþ1Biðnþ1Þ cosðhi � hnþ1Þ

� V �i V �nþ1Biðnþ1Þ cosðh�i � h�nþ1Þ�; ki1 > 0 is a scalar

According to the condition (2a) and (2b), the algebraic
equations to be solved are

� x0

Mi

oH d

odi
� x0Di

M2
i

oH d

oxi
þ J i1

oHd

oE0qi

¼ x0

Mi
ðP mi � P eiÞ �

Di

Mi
ðxi � x0Þ ð18Þ

ozHdðx; zÞ ¼ Aðx; zÞrðx; zÞ þ Bðx; zÞGToxH dðx; zÞ ð19Þ

where x ¼ ½x1; . . . ; xn�T; xi ¼ ½di;xi;E0qi�
T
; z ¼ ½z1; . . . ;

znþmþ1�T; zi ¼ ½hi; V i�T,

G ¼
G1

. .
.

Gn

2
664

3
775;G i ¼ ½0; 0; 1�T
Then we can get

J i1 ¼ �
x0ki1

Mi
V i sinðdi � hiÞ

Aðx; zÞ ¼ I2ðnþmÞ;

ð20Þ

where I2(n+m) is the identity matrix, bi1(xi,zi) = ki1Visin
(di � hi), bi2 (xi,zi) = ki1cos(di � hi).

The Hamiltonian structure of system (10) can be
expressed as

_xi ¼
0 x0

Mi
0

� x0

Mi
� x0Di

M2
i

J i1

0 �J i1 �kei

2
64

3
75

oHd
odi

oHd
oxi

oHd
oE0qi

2
664

3
775þ

0

0

1

2
64
3
75u0i

¼ ½J i � Ri�
oHd

oxi
þ G iu0i

ð21Þ

In the following, we check that the Hamiltonian function
Hd(x,z) satisfies the Lyapunov function properties.

The first property relates to the strict minimum at the
given equilibrium (x*,z*).

Define the Jacobian

J l ¼
og
oh

og
oV

oh
oh

oh
oV

" #
ð22Þ
Definition 1. [20]: for the compact set Ck, det
Jlj(x, z)2Ck

5 0, and Jlj(x, z)2Ck
has k negative eigenvalues.

There are often several solutions to the equilibrium load
flow equations of which one is the normal stable equilib-
rium point (SEP), angularly stable for the DAE model
(15) and within the sheet C0. Usually, the SEP in C0 will
be considered the ‘normal’ stable operating point of the
power system. Other equilibrium points, which correspond
to ‘‘low voltage’’ solutions, are usually considered to be
infeasible even if they are angularly stable for the DAE
model [20,21]. So it is reasonable to assume that the stable
equilibrium (x*,z*) 2 C0.

Lemma 1. The Hamiltonian function Hd(x,z) defined by (17)

admits a strict minimum at the stable equilibrium (x*, z*).

The proof of this lemma is given in Appendix.
In order to ensure the validity of the Hamiltonian func-

tion Hd(x,z) as a Lyapunov function, we also need to check
that the derivative of Hd(x,z) along trajectories is locally
non-positive about the operating point.

Here, we determine an adequately large vector mi =
[mi1,mi2]T such that



Fig. 1. A nine-bus power system.
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jbi1
_hij 6 mi1; jbi2

_V ij 6 mi2 8ðx; zÞ 2 X ð23Þ
Following the Proposition 1, the excitation control law

of generators can be expressed as

Efi ¼ � xdi � x0di

� �
Kiðdi;E0qi; hi; V iÞ

þ T 0d0i �J i1
oHd

oxi
� kei

oH d

oE0qi

þ u0i

" #

¼ � xdi � x0di

� �
Kiðdi;E0qi; hi; V iÞ

þ T 0d0i ki1V i sinðdi � hiÞðxi � x0Þ � kei
oH d

oE0qi

"

�sign
oH d

oE0qi

 !
ðmi1 þ mi2Þ

#
ð24Þ

where oHd
oE0qi
¼ ci

h
E0qi � E0�qi þ ki1½V i cosðdi � hiÞ � V �i cos

ðd�i � h�i Þ�
i
þ 1

x0diki1
E0qi � E0�qi

� �
Then the derivative of Hd(x,z) along trajectories is

locally non-positive about the operating point.

_Hd 6 �
Xn

i¼1

Di

x0

ðxi � x0Þ2 �
Xn

i¼1

kei
oHd

oE0qi

 !2

6 0 ð25Þ

Because the system (15) is stable at the operating point,
it can be see from the dynamic system theory that the
system converges to the largest invariant set contained in

E ¼ fx; z : _H dðx; zÞ ¼ 0g ¼ fx; z : xi ¼ x0;

E0qi ¼ E0�qi; g ¼ 0; h ¼ 0; i ¼ 1; . . . ; ng ð26Þ

From xi � x0;E0qi � E0�qi, we can conclude that
Pmi � Pei = 0 i = 1, . . . ,n

Thus, the point in the largest invariant set satisfy

xi ¼ x0

P mi � P ei ¼ 0

g ¼ 0

h ¼ 0

8>>><
>>>:

; i ¼ 1; . . . ; n ð27Þ

which is exactly the condition the equilibrium satisfies.
Hence there exists a suitably small neighborhood, X, of
the operating point such that the largest invariant set in X
only contains one point, i.e., the operating point. Because
Hd(x,z) is positive definite about the equilibrium point,
Hd(x,z) can be regarded as Lyapunov function. From the
LaSalle’s invariance principle, the closed-loop system (15)
with the control law (24) ensure asymptotic stability of the
desired equilibrium with the Hamiltonian function Hd(x,z).

Remark 1. The control law can be made more practicable
for engineering applications.

According to the power system dynamic, we have

E0qi � V i þ Qeix
0
d=V i; di ¼

Z t

0

ðxiðsÞ � x0Þds ð28Þ

where Qei is the generator reactive power output.
According to the expression (28), the variables in the
control law (24) are local measurable and just related to
the same generator. Therefore, the proposed control law
is decentralized and decoupled. It means the proposed
method is not limited by the size of power system. Because
the Hamiltonian function Hd(x,z) satisfies the Lyapunov
function properties, the proposed method is still effective
in case of a large power system according to Proposition 1.

While assuring the desired behavior, the control law (24)
is discontinuous across the surface oH d=oE0qi ¼ 0, which
leads to control chattering. We can remedy this situation
by smoothing out the control discontinuities in a boundary
layer neighboring the surface oH d=oE0qi ¼ 0. The sign func-
tion sign(Æ) in (24) is replaced by sat(Æ), where

satðsiÞ ¼
1 if si > ki2

si=ki2 if � ki2 6 si 6 ki2

�1 if si < �ki2

8><
>: ð29Þ
4. Simulation

To illustrate the effect of the proposed method on tran-
sient stability, transient stability studies are made on a
nine-bus system as shown in Fig. 1. The data of the gener-
ator and network are provided in [13].

In this example, Generator 1 is chosen as the reference
machine. The static characteristic for each reactive power
is represented as

Qd
i ðV iÞ ¼ Qi0½0:2ðV i=V i0Þ2 þ 0:4ðV i=V i0Þ þ 0:4� ð30Þ

For the purpose of comparison, two different control
schemes are investigated:

Scheme 1: Generator 2 and 3 are equipped with the same
automatic voltage regulator (AVR) and different
power system stabilizer (PSS). Fig. 2 shows the
AVR model. The transfer function of conven-
tional PSS with input signal Dx is

GðsÞ ¼ Kw
sT w

1þ sT w

ð1þ sT 1Þ
ð1þ sT 2Þ

ð1þ sT 3Þ
ð1þ sT 4Þ

ð31Þ



Fig. 2. Conventional automatic voltage regulator.

Fig. 3. Rotor angle response of the system with PSS (Case 1).

Fig. 4. Rotor angle response of the system with the proposed IDA-PBC
(Case 1).
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The data of PSS is shown in Table 1.
Scheme 2: The proposed IDA-PBC controller is imple-

mented at Generator 2 and 3, and parameters
are given in Table 2.

To simulate the system behaviour under large distur-
bance conditions, studies considering a wide variety of
fault conditions have been carried out on the test system.
All faults are assumed to be introduced at the same time
t = 0.2 s and removed after a certain time (called clearing
time tcl). The following faults are considered:

Case 1: A fault occurs at bus 9. The pre-fault and post-
fault systems are identical. tcl = 0.083 s.

Case 2: Assume there are two lines between bus 5and bus
7. A fault occurs at bus 7 and is cleared by tripping
one line between bus 5 and bus 7. tcl = 0.15 s.

Case 3: The operating power level is increased by 30%. A
fault occurs at bus 4. The pre-fault and post-fault
systems are identical. tcl = 0.18 s.

The simulation results are displayed for a period of 5 s.
The control responses of two control schemes under the
three fault conditions are shown in Figs. 3–9, respectively.
It is seen that the generators oscillate initially when the dis-
turbance occurs, and are then stabilized gradually within
several seconds. The system is stable and damped quickly
under the proposed IDA controller, whereas it continues
for much longer under PSS control. From the simulation
results it is observed that the proposed method can increase
Table 1
PSS data

kw Tw T1 T2 T3 T4

G2 8.255 5 0.201 0.05 0.137 0.05
G3 1.082 5 0.631 0.05 0.629 0.05

Table 2
The proposed controller data

k1 k2 ke c m1 m2

G2 6 0.05 20 0.1 9 1.2
G3 4 0.05 25 0.1 6 0.8

Fig. 5. Voltage response at bus 3 (Case 1).



Fig. 6. Rotor angle response of the system with PSS (Case 2).

Fig. 7. Rotor angle response of the system with the proposed IDA-PBC
(Case 2).

Fig. 8. Rotor angle response of the system with PSS (Case 3).

Fig. 9. Rotor angle response of the system with the proposed IDA-PBC
(Case 3).
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the system damping and improve the power angle stability
of the power system with respect to different fault dura-
tions, fault locations. Further, we can also say that the pro-
posed control law is effective at different operation levels
compared with Scheme 1.
5. Conclusion

Recently developed IDA-PBC methodology is extended
to study the stability and control of a class of DAE in this
paper. To ensure asymptotic stability of the closed-loop
system with a port-controlled Hamiltonian structure, a
state feedback control law is proposed. And this method
is applied to develop excitation controllers for multi-
machine power systems based on structure preserving
model. A key step in the procedure is the modification of
the energy transfer between the electrical and the mechan-
ical parts of the system. The physical features of the gener-
ator are used to construct Lyapunov function. Based on
the dissipative Hamiltonian realization, a decentralized
control strategy has been presented. The controller is
proved to be effective in damping the oscillations and
enhancing the system stability by the results of simulation
research.
Appendix. Proof of Lemma 1

Since H1(x,z) is positive semi-definite and H1(x*,z*) = 0,
in order to show the strong convexity of Hd(x,z), we need
to check the positive definiteness of H2(x,z).

At the equilibrium, we have

oH 2

ox

����
ðx�;z�Þ

¼ 0;
oH 2

oz

����
ðx�;z�Þ

¼ 0 ðA:1Þ

After a straightforward calculation and rearranging the
rows and columns, the Hessian matrix of the function
H2(x,z) is give by
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ðA:2Þ

where M ¼
M1

. .
.

Mn

2
64

3
75,

N ¼
1= x0d1k11

� �
. .

.

1=x0dnkn1

2
64

3
75

P ¼ Pe � Pm

Notice that Hessian matrix of H2(x,z) is positive definite
iff

ðA:3Þ

is positive definite. According to the Schur complements,
matrix J can only be positive definite iff J ljðx�;z�Þ and

F ¼ oP

od
� oP

oh
oP
oV

	 

J�1

l

og
od

oh
od

" #�����
ðx�;z�Þ

ðA:4Þ

are positive definite.
The matrix Jl is the Jacobian of the normal power flow

Jacobian and (x*,z*) 2 C0. Therefore J ljðx�;z�Þ is positive
definite [17,21].

Linearizing the structure preserving model with a con-
stant quadrature axis voltage gives [20]
At the operating point (x*,z*), the linearized version of
SPM is stable (angle-wise). It means that all eigenvalues
of A have negative real parts. Because the number of posi-
tive eigenvalues of A is equal to the number of negative
eigenvalues of F [20], F is positive definite.

Therefore, H2(x,z) has a strict local minimum at equilib-
rium point (x*,z*), where H2(x*,z*) = 0. It means H2(x,z) is
positive definite. Hence, we can conclude that the
Hamiltonian function Hd(x,z) will be locally positive defi-
nite and reach the minimum at stable equilibrium point
(x*,z*).
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