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© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Carrier-Sense Multiple Access with Collision Avoidance (CSMA/CA) is a random access protocol that has been adopted
in a number of local or personal area networks protocols such as Wi-Fi [1], Zigbee [2] and Homeplug. In CSMA/CA, nodes
partake in a contention process involving the use of backoff counters and channel sensing prior to transmitting, as follows:
At the end of a successful transmission process, a node will initialize its backoff counter to a uniformly random value within
[0, Wy — 1], where W, is the contention window length. If it has a frame queued up for transmission, it will sense the
channel for other nodes’ transmissions, and decrement its counter for every unit of time known as the ‘slot time’ for which
the channel is clear. When the node’s counter reaches zero, it starts its transmission process. If the transmission is successful,
the process is repeated for the next frame in its queue. If it is not, the process is repeated for the same frame with the counter
value re-initialized to a uniformly random value in a range double the previous, i.e. [0, 2W, — 1] if multiple, collision-based
backoff stages with exponentially increasing windows are used, or in the same range if only a single stage is used.

Due to the mechanism of this contention process, CSMA/CA leaves a channel occupancy signature (Fig. 1) in its band of
operation with an idle period distribution that can be mathematically expressed as a function of its contention window size
and the number or participating nodes. Knowledge of this distribution may allow further analytical modeling of CSMA/CA in
scenarios that are not possible with just the knowledge currently available in the literature, especially in situations involving
co-channel interference or spatial reuse. For example, in [3], we explicitly use this distribution to develop the throughput
model of CSMA/CA using a spatial channel-sharing scheme.

Apart from a purely analytical perspective, this distribution may also be useful in real-life applications whereby there
is a need for a device to detect CSMA/CA transmissions and the number of actively participating nodes without fully
implementing the demodulation scheme for the Physical layer protocol in use. For example, the device may employ a basic
energy detector with frequency and band-pass filter set to the operating band under examination, collect the idle period
statistics over time and perform best-of-fit tests with the curves generated by probability mass function of the idle period
using different values for contention window size and number of nodes. Such applications may be common in devices that
are has limited processing resources but are still required to perform its sensing functions across a wide range of protocols
(e.g., spectrum sensing for cognitive radios, wireless sniffing, etc.).
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Fig. 1. Idle period in (a) CSMA/CA with ACK and (b) with RTS/CTS signaling.

In this paper, we propose an analytical model for the idle period distribution for CSMA/CA with a single backoff stage
(i.e., with a fixed contention window size), and provide simulation results to demonstrate its accuracy.

2. Related work

Despite its maturity, there is still much to be uncovered regarding CSMA/CA from an analytical perspective. Year on year,
new characteristics are discovered, such as the access delay and delay jitter [4,5], and collision probability in unsaturated
loads [6]. We seek to add our discovery to this knowledge base. Our analysis is based on the Markov chain model of CSMA/CA
that was initially proposed in [7] and subsequently improved upon in terms of correctness in [8-11]. A component of our
model (the frozen counter distribution) was presented in [12]. The full idle period model incorporating a simpler and
more intuitive model for that component appears in [13] in shortened form. In this extended paper we provide detailed
elaboration of the derivation steps, provide more verification with simulation data (including Chi-Square test results), and
further compare its accuracy against two approximation models for the idle period — one by Bowden et al. [14], and the
other which can be intuitively worked out from the Markov chain model of CSMA/CA [7,8,11].

3. System assumptions

As mentioned, our analysis is for the case when the contention window is fixed. As a result, effects such as capture or
frame outage due to fading will not affect its validity. However, any node within the network must be able to sense the
transmissions of other active nodes in the network, i.e., there are no hidden nodes. Otherwise, the assumption that the
backoff counter is decremented when the channel is clear (as per the protocol definition) will not be correct. In addition,
active nodes are assumed to be having at least one frame in its transmission queue during the analysis period. Vice-versa,
inactive nodes are assumed completely silent throughout the analysis period. Transmissions may be point-to-multipoint as
in an infrastructure network, or peer-to-peer as in an ad hoc network.

During the busy period, there may be gaps (e.g., SIFS in Fig. 1). Such gaps are assumed to be smaller than the smallest
possible idle period (e.g. DIFS), and are not considered in our analysis. For the sake of generality and easier mathematical
representation, we denote the idle period, I, as a discrete random variable representing the number of backoff slots at the
start of the CSMA/CA cycle (Fig. 1). The actual observable idle period, I,ctua1, can be obtained by multiplying I with the backoff
slot duration, and adding in any fixed period that may precede it, e.g. I,ctuay = I x aSlotTime + DIFS as per the IEEE 802.11
standard. Based on this convention, for CSMA/CA with fixed contention window, the value of I will be bounded in [0, W — 1]
since the backoff counter can only take values in this range.

4. Proposed model

Denote B, as the random variable representing the new value that a node sets its backoff counter to after a transmission,
and By the value at which it is frozen when it senses the channel as busy. At the end of each cycle, there will be between
one to N nodes transmitting in the busy period for that cycle (resulting in a collision if more than one node is involved).
Let I71 w1 be the variable for this value. Assuming I7; 51 and By are not interdependent, it can be worked out that I has the
distribution,

M=

[Pr(Ijiny = 7) - Pr(By > )" - Pr(Bf > N7 - (1 —Pr(B, > i | By > )" - Pr(By > i | Bf > )""7)]
1

Prd=i) ==
N
S Pr(Ijin = 7)

=1

ie[0, Wy —1]. (1
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The above equation simply states that, for the idle period to be i slots, the backoff counter for all nodes at the end of the
previous cycle must be equal to or greater than i, with at least one node having its backoff counter value equal i. It is made up
of three distributions: 1 n}, B, and By. The distribution of Iy nj can be obtained through solving the Markov chain model of
the number of transmitters I" = ITg nj at the turn of each slot. I"’s state transition probabilities can be worked out from [11]

to be:

NY [ 2 \7 (W,—2\"T"
= 0 70 =0, 7, € [0, N]

71 Wo Wo

Pr(fivi=n | lk=7) =1 (1, 1\ Wy —1\0" (2)
— 1,N 0
<ﬁ> <W0> ( Wo ) 70 € [1,N], 71 € [0, 70]
7o € [1,N], 7y € [to + 1, N].

Its stationary distribution, m . is solvable with,
7= 1lim[10---]-P" (3)
n—oo

where the i-th element of row vector x . equals Pr (I" = i), and the (i, j)-th element of matrix P equals Pr (Iiy1 = j | I = i).
I71,n) s simply equal to I” minus the case when I = 0, i.e,,
Pr(lyn=71) =Pr(I" =1 | I > 0)
Pr(I' =1
_ =9 T € [1,N]. (4)
1—Pr(I" =0)

Meanwhile, the distribution for B, by definition of the protocol is,

Pr(B, = b) = Wi b e [0, Wy —1]. (5)
0

This leaves us with just one more distribution to solve: By, the frozen counter distribution.

4.1. Frozen counter distribution

Our derivation of the frozen counter distribution is based on the observation in [8] and [ 14] that at the start of any backoff
slot, the distribution of the backoff counter value for a node takes on the left-handed triangular distribution in [0, Wy — 1].
We can use this observation to derive By: Since a node freezes its counter on detecting transmissions from other nodes, it is
reasonable to assume that the distribution for By is also a left-handed triangular distribution, but in the range [1, Wy — 1]
since at the value of zero, the node itself will transmit:

Pr(Br =b) =Pr(Bf =Wp — 1) +m- (Wo—1—b) be[l,W,—1] (6)
Wp—1
> Pr(B=b)=1. (7)
b=1

Eliminating gradient m from (1) using (7) we obtain:

2Wo —1—b) 2b— W,
Pr(Bf =b) = { Wy — DH(Wy —2) Wp—2
1

Pr(Br=Wo—1) Wy >2
Wo =2

be[1,Wy—1]. (8)

The second clause in the above equation has the value ‘1’ because with Wy = 2, B; can only assume one value, i.e. ‘1'.
Note that (2) has an unknown parameter in Pr (Bf = W, — 1). For large windows, this may be approximated to zero. But
this will not hold for smaller window sizes. Having an accurate value for this point in Bf’s distribution is the key to having
an accurate formula for the idle period distribution.

4.1.1. Probability Pr (Bf = Wy — 1)

For By to take the value of (W, — 1), two events must occur consecutively following a collision: Firstly, a collided node
must select (Wy — 1) as its new counter value at the end of a cycle in which it had transmitted. Secondly, in the following
cycle, the other node (or nodes) involved in the collision transmits immediately, leaving no idle slots for the first node to
decrement its counter before freezing it. This results in By assuming the same value as B,,. If the third cycle has no idle slots
as well, then the first node will freeze its counter at Wy — 1 again, and repeatedly do so as long as subsequent cycles have
no idle slots.

This situation of a node having its counter frozen at its new value is not exclusive to the case when the new counter value
is Wy — 1: as long as the new value is within [1, Wy — 1], the above scenario can occur. In order to solve for the specific
case when the new selection equals Wy — 1, we must first consider this general case. By set convention, this situation can
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be represented as {Bf = b, | B, = b,}. The flipside of it, i.e., the situation when the counter is not frozen at its new value, is
denoted as {B; # b | B, = b}, or more precisely, {Bf < b | B, = b} since By < B,. This situation is only possible for nodes
that go through a cycle without transmitting in it. Denote « and $ as the average times these situations occur respectively,
over a renewal interval comprising one cycle with an idle period followed by K ‘busy-period-only’ cycles. The number
of transmitters in these K ‘busy-period-only’ cycles follow the sequence {Iy, Iy, I, ..., Ik, Tkt1, ..., [x—1} where I}
represents the number of transmitting nodes in the k-th cycle in the interval, with K in [1, oo]. If « and 8 is found, then we
would have solved Pr (By = W, — 1) since,

o
PrBr =Wy —1) =Pr(Bf =Wy —1|B, >0)- ——
(Bf o—1 (Br 0 | By )a+ﬂ

1 o
T We—1 a+8

4.1.2. Average times for {Bf = b | B, = b}

Denote oo as the number of times {Bf = b | B, = b} occur in the interval which starts with I = 7o. Obviously, with
7 = 1,{Bf = b | B, = b} cannot happen in the subsequent cycle since at least 2 nodes are required to make it happen
(i.e., one node to select a non-zero value and the other to select zero for their backoff counters). Hence, oy = 0.

With 7o = 2,{B; = b | B, = b} can only occur if there is a ‘drop’ from 2 to 1 in the sequence for I'. For example,
sequences {2, 1},{2, 1, 1},{2, 2, 2, 1, 1} all result in one node freezing its backoff counter at its initial value in each cycle after
the ‘drop’. Over all possible sequences matching the general pattern {2..., 1...}, the average times {B = b | B, = b} occur
is therefore:

o0 o0
ay =Y [Pl =21 =21 Pl =1| L1 =2)- Y _[Pr(Tk=1] Loy = DI
i=0 i=0

Pr(liy=1]| Il =2) (10)
(M=Pr(lkx=2|T1=2)]-1=Pr(lx = 1| I}-1 = 1)]

The numerator in the above equation is the probability that I} transitions from 2 to 1 at some point along the sequence,
while the denominator terms are the probabilities that I is stuck at 1 and 2 for all possible number of repetitions.

With tp = 3, three sets of ‘busy-period-only’ cycle sequences for I, are possible which contains situation: {3..., 2...},
{3...,1...}and {3..., 2..., 1...}. The first set will have one node repeatedly encountering this situation, while the last two sets
will have 2 nodes doing so. Since the last set includes the pattern {2...,1...}, ; can be incorporated into the formulation for
o3 as follows:

_ Pr(Fk=2|Fk_1=3)
[1—Pr(lx=3|Tk-1=3)]-[1=Pr(lx =2 | I[(—1 = 2)]
Pr(li =1| i1 =3) Pr(ly =2 | -1 =3) o

a3

+2. : : (11)
[1—-Pr(l=3|l-1=3)]-[1-Pr(lk=1]| -1 =1)] 1-Pr(l=3|T-1=3)
With increasing values of 7y, it can be shown that the recursive function:
fiter U o) Pl T =rieer) | | N
Z % + Z [Pr(ly =i | Ii—1 = Titer) * Qrec(i, To)]
1=Pr (=il T—1=i)
i= i=2
Arec (Titer» T0) = (12)

1- Pr(rk = Titer | I = Ti[er)

yields aq if we start the recursion with tj,; = 79. @ which is the parameter we are originally interested in, is the sum of
oo over all possible values of 1y, weighted by the probability that the interval starts 7o with Iy = 74:

N
a=Y [Pr(lk =70 | [io1 =0) - ag,. (13)

T0=2

4.1.3. Average times for {Bf < b | B, = b}

B can similarly be worked out following the recursive approach used to solve for . Denote ;¢ as the number of times
{Bf < b | B, = b} is experienced by a node in the interval. Observing all possible sequences with 7o = 1, i.e., sequences
which match the pattern {1, 1, ... 1}, it can be worked out that:

Bi =) [Pr(li=1] Ty =]
i=0

1
= . (14)
1=-Pr(li=1[T1=1)
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With tg = 2, two general patterns are possible: {...2...}and {...2, 1....}. For this case, it can be worked out that:

Bo= ) [Pl =2| N1 =21 + Y [Pr(Ne =2 Ie1 =21 - Pr(le =1 Iie1 = 2) - By
i=0 i=0

1+ Prlk=1[11=2)- B4 (15)
1-Pr(=2|01=2)

Continuing along this route of increasing values for 7y, it can be worked out that ;¢ can be solved recursively with,

0—1

1+ Z [Pr(l} =i| Ii—1 = 70).Bi]
i=1

1-Pr(lx =1 | I—1 = T0)

/3'[0 = (]6)

B which is the parameter we are primarily interested in, is the sum of B, over all values of 7o for which {B; < b | B, = b}
is possible (i.e.,tp in [1, N — 1]), weighted by the probability that the interval starts with Iy = 79 and the number of nodes
not transmitting in the interval:

N

ﬂ: ;[Pr(rk:l’o | I :O).(N_TO)'ﬁTo] Wo > 2 (]7)
0 W = 2.

The second clause in the above equation equals ‘0’, since {B; < b | B, = b} is not possible when W, = 2. With this
equation, the frozen counter distribution, By, is solved: « and 8 obtained via (13) and (17) can be inserted into (9) to obtain
Pr (Bf = Wy — 1), which in turn can be substituted into (2) to obtain the frozen counter distribution, Pr (B; = b):

2Wo —1—b) 2b— W, o
+ . Wy > 2
Pr(Bp=b) = { Wo—D(Wo—2) Wo—1DWo—2) a+8
1 Wo=2
1 2Wo—1-b)
w1 Yt W w2 We = 9
= atp 0 be[1,W,—1]. (18)
1 Wo =2
This, and the new counter distribution Pr (B, = b) given in (5), can be substituted into (1) to get the idle period

distribution.
5. Alternative model 1: Bowden et al.’s approximation

Although the analysis and verification in [ 14] was for the average idle period, Bowden et al. did provide an approximation
for the full distribution as an intermediary step. Their analysis is based on approximating the discrete backoff counter
distribution as a continuous one, and further making two simplifying assumptions: Firstly, it is assumed the new backoff
counter value is randomly polled from [1, W;]. Based on this assumption, the continuous cumulative density function
approximating the new and running backoff counter distribution was given respectively as:

Wo—>b
Bugm(b) =1 — 0<b=W (19)
Wo
Wo —b\?
By, (b)=1— 0<b<W,. (20)
Wo

Secondly, it was assumed that in any CSMA/CA cycle, the busy period involves only one transmitter. As such, the
probability of the idle period being less than i was given as the product of (N — 1) stations having less than i for their
frozen counter values and one station having less than i for its new counter value:

Teum (@) = 1= (1 = By, 011 = By (1)

Wo—i 2N—1 )
=1- 0<i<W,. (21)
Wo

The discrete idle period distribution was then given as:

Pr(l = 1) = lam (D) — lam(i — 1) 1 € [1, Wo]. (22)
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To reconcile this formula to the fact that the new backoff counter falls within [0, Wy — 1], the frozen counter within [1,
Wy — 1], and the idle period within [0, Wy — 1] rather than all falling within [1, Wy ]. we modify the analysis by shifting the
continuous distributions Byeym and By, accordingly:

, Wo—1—b
B, b)=1———""+— —1<b<Wy-—-1 (23)
cum WO
) Wo—1—b)\>
This modification leads to the following corrected pair of equations for the idle period distribution:

(WO 1= i)ZN—l

—_— i<Wy—1
’ N W, (W _1)2N—2 - -
Icum(l) - W(())— ‘(1) —1i . (25)
1-— —w -1<i<0
0
Pr(l = i) = I, (i) — I/, (i— 1) i€[0,W—1]. (26)

6. Alternative model 2: Markov chain approximation

Intuitively, the idle period distribution can also be approximated via (2) and (3). Here, we assume that each variate i
of the idle distribution has the occurrence probability of a sequence of consecutive idle states of length (i — 1) following
a busy period. E.g., to evaluate the probability for Pr (I = 3), we work out the chain probability for the sequence I' =
{t, 0, 0,0, 7}14}, where 7 and 744 are non-zeroes. Based on this logic, the idle period distribution following a busy period
involving t transmitters can thus be expressed as:

Prl=i|T =1)

Pr(l, >0| 1 =1) ) i=0
[Pr([y =0 | Ty =1)-Pr([x=0| I,y =0V -Pr([x >0 | [y =0)] .
= W1 iell,Wo—1] (27)
Pr(I“k>O|Fk_1:O)- Z Pr(Fk:O|Fk_1:O)(’\—1)
A=1

The denominator term in the second clause for the above equation is just for normalizing the cumulative probability
for the above equation to 1. It accounts for the fact that in the Markov chain model, the idle period can be infinitely long,
whereas in the actual case its upper bound is (W, — 1). Over busy periods involving all number of transmitters, the idle
period distribution is therefore:

iPr([‘:r)-Pr(l:HF:r)

o t=1
Pr(Il =i) = TPl = 0) . (28)

7. Verification with simulation data

The ns-2 IEEE 802.11b simulator [15] was used to obtain the simulation results with which to assess the accuracy of
our proposed model compared to Bowden et al.’s and the Markov chain approximations. Using default transceiver settings,
N nodes were placed arbitrarily within a 50 m cell radius (well within sensing distance) to avoid the occurrence of hidden
nodes, and fed with saturated peer-to-peer flows of 512-byte frames. A modification was made to the mac-802_11.cc source
code to fix the contention window, and to record the idle periods into frequency bins in the range of [0, W, — 1].

For each combination of Wy in {4, 8, 16, 32, 64} and N in {2, 4, 6, 8, 10} we ran the simulation 30 times with each run
starting with a different seed value for the random value generator, recording 10,000 samples of the idle period at each run.
Using these 30 sets of data (one from each run), we then evaluate the accuracies of the three analytical models for each
Wpand N setting. We present a few representative snapshots of the results in the following figures and tables.

In Fig. 2 the idle period distributions for Wy in {4, 8, 16, 32} and N in {2, 10} based on the average of the 30 simulation
results, and values computed using the three different models are shown. In general, the curve starts with a non-zero value
at (I = 0), abruptly peaks at (I = 1) and then tapers off slowly towards the right end of the distribution. As N increases, the
peak becomes narrower, but remains located at (I = 1). The reason why the curve is shaped as such is largely due to the
left-handed triangular shape of the frozen counter distribution which peaks at (By = 1). Although this latter distribution
tapers off linearly to the right, the probability distribution for at least one node having a certain frozen counter value in a
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Fig. 2. Analytical vs. simulation values for Pr (I = i) for (a) Wy = 4, (b) Wy = 8, (c) Wy = 16 and (d) W, = 32.

group of N nodes would also end up with a peak at (B = 1), but with a concaved taper that slopes off at a sharper angle as
N increases.

Note that in all four charts, the proposed model yields curves that are practically coincident on the simulation curves. The
Markov chain and Bowden et al.’s approximation models yield small degrees of deviation from the simulation curve when
both values for N and W, are very small (e.g., Wy = 4 and N = 2). However, as N gets larger while keeping to small values
for Wp, the deviation for Bowden et al.’s method is aggravated immensely, whereas the accuracy for the Markov chain model
improves to the point of nearly matching the simulation curve. This trend continues in their curves for Wy = 8. However,
with increasing Wps, the accuracy of Bowden et al.’s model improves to the point of matching the simulation curves when
Wy = 32, whereas the Markov chain model continue to exhibit noticeable deviations.

Table 1 quantitatively confirms our observations regarding the relative accuracies of the models for small Wys based on
the charts. Besides points in the distribution, we also include the expectation, variance, and the Pearson’s Chi-Square ( x2)
average test measure and passing rates (at p-value >0.05) for comparison. Here, it can be seen that for both N = 2 and
N = 10, the proposed model yields values that fall within the 95% confidence interval (£1.96 standard deviation) of the
30 sets of data, and passes all or nearly all Chi-Square tests on the 30 sets of data. For the Markov Chain model, this level of
accuracy only seen when N = 10. Meanwhile, Bowden et al.’s model shows significant deviations from the 95% confidence
interval of the simulation data, especially for N = 10.

Asindicated by the graph for Wy = 32, with the exception of the Markov Chain model, results for the other two models fall
or converge on the simulation results for larger Wys. This is demonstrated numerically in Table 2 which shows the values for
both models falling within the 95% confidence band of the simulation results and having high passing rates for the Chi-Square
test. Meanwhile, the numbers for the Markov Chain method suggest that this method may not be suitable for large Wps.
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Table 1
Analysis vs. simulation: idle period distribution, expectation, variance, chi-square test measure and pass rates for Wy = 4
and N = {2, 10}.
N Method Pr(l)= Ell Var([l] Avg. x? % Pass
(0) (1) (2) (3)
. . o 0.295 0.492 0.181 0.026 0.935 0.578
Simulation (95%C) 0999 0496 0184 0027 0942 0585 B
2 Proposed 0.297 0.495 0.182 0.026 0.937 0.579 2.80 96.7
Bowden 0.250 0.528 0.194 0.028 1.000 0.556 121.77 0.0
Markov 0.300 0.533 0.133 0.033 0.900 0.557 219.07 0.0
. . o 0.524 0.472 0.000 0.000 0.473 0.250
Simulation (95%C) o558 0475 0001 0000 0476 0251 B
10 Proposed 0.526 0.473 0.000 0.000 0.474 0.250 0.57 100.0
Bowden 0.250 0.750 0.000 0.000 0.750 0.188 4072.61 0.0
Markov 0.526 0.473 0.000 0.000 0.474 0.250 0.57 100.0
Table 2
Analysis vs. simulation: idle period expectation, variance, chi-square test measure and pass rates for Wy = 64
and N = {2, 10}.
N Method E[1] Var[l] Avg. x? % Pass
. . o 15.945 149.170
Simulation (95% CI) 16.049 151.805 - -
2 Proposed 15.996 150.560 56.82 100.0
Bowden 16.000 150.534 56.76 100.0
Markov 14.835 173.358 540.93 0.0
. . o 3.599 8.866
Simulation (95% CI) 3621 9081 - -
10 Proposed 3.610 8.987 18.90 100.0
Bowden 3.618 8.971 21.87 933
Markov 3.610 9.899 41.12 233

Table 3
Chi-square test results on the idle period distribution models for all combinations of W, =
{4,8,16,32,64} and N = {2, 4, 6, 8, 10}.

Model Avg. x? % Pass
Proposed 15.6 93.9
Bowden 562.0 337
Markov 130.0 18.0

To conclude our analysis of the results, in Table 3 we rank the methods based on their per-test average x? scores
and passing rates (at p-value >0.05) for Chi-Square tests done for 30 simulation runs for each combination of Wy =
{4, 8,16, 32,64} and N = {2, 4, 6, 8, 10} (for a total of 750 tests).

8. Conclusion

We have presented an analytical model of the idle period distribution in CSMA/CA with a single backoff stage. Against
simulation results, this model appears to be very accurate if not exact, judging from the results of the Pearson’s Chi-Square
goodness-of-fit tests under the range of settings for contention window size and number of nodes that we used. This finding
could be a useful addition to the knowledge base in the literature concerning CSMA/CA from a purely analytical perspective,
and may act as a starting point for arriving at the exact expression for the idle period for CSMA/CA with multiple backoff
stages. It may also be useful in spectrum sensing or wireless sniffing applications where there is a need to detect CSMA/CA
transmissions without the full physical transceiver implementation.
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