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A B S T R A C T

The study presents the post-buckling behaviour of thin-walled beam of open section supported by Winkler-
Pasternak foundation and it is subjected to an axial compressive load. Here, the assumptions are the strains to be
small and elastic, in-plan cross-sectional deformations and the shear deformations to be negligible. The post-
buckling paths are determined for clamped beam of I - cross-section which is constant. The point of bifurcation
for clamped beam is calculated. It is found to be symmetric and stable for various values of Winkler-Pasternak
foundation parameters and Warping parameter.

1. Introduction

The study of the post-buckling response of thin-walled prismatic
beam of open section has many applications in civil, naval, rail, aircraft
and automotive structures. Furthermore, several of the base-frame
structures of rotating equipment consist of thin-walled beams of open
section which are either partially or continuously supported by other
structural members or concrete foundations. Under some critical
loading conditions these beams undergo either coupled flexural-tor-
sional or pure torsional buckling which poses critical design problems
in industry. Practical problems involving beams supported on a grid-
type support structure or different types of machine foundations come
under the category of beams on Winkler-Pasternak foundation and this
improved model is being adopted for getting more accurate dynamic
characteristics of the supported beam in bending, torsion and coupled
bending-torsion type of problems.

The problem of linear torsional buckling has been widely investi-
gated and the results for such cases are presented [1,2]. Although, the
classical linear buckling theories for elastic beams necessarily predict
buckling at loads that remain constant as the buckling amplitude
increases. YOUNG [3] was the first person who investigated the
nonlinear behaviour of circular members in uniform torsion. The
related problem of torsional stiffness of narrow rectangular sections
under axial tension was examined by BUCKLEY [4]. The behaviour of
thin-walled I and Z sections was investigated by CULLIMORE [5].
GHOBARAH and TSO [6,7] presented more accurate theory of non-
linear non-uniform torsion of thin-walled beams of open section by
using the principle of minimum potential energy and taking into

account large torsional deformations under general loading and bound-
ary conditions.

Bazant and Nimeiri [8], Epstein and Murray [9], Szymzak [10],
Roberts and Azizian [11] and Wekezer [12,13] studied the nonlinear
torsional behaviour of thin-walled beams in a great detail. The post
buckling behaviour of thin-walled open cross-section compression
members using the general nonlinear theory of elastic stability was
studied by Grimaldi et al. [14]. However, in all these studies the effect
of continuous elastic foundation was not considered. Kameswara Rao
et al. [15,16] studied the effect of Winkler-type elastic foundation on
the linear torsional stability of thin-walled beams of open section, but
its effect on post-buckling behaviour was not studied. KAMESWARA
RAO ET AL., [17] investigated the post-buckling behaviour of thin-
walled beams of open section subjected to an axial compressive load
and resting on a Winkler-type continuous elastic foundation.

Winkler model of elastic foundation, also known as one-parameter
model, is the simplest and the widely used model which is based on the
assumption that the respective displacement is proportional to the
pressure at the contact surface all along the beam length and that the
soil foundation is composed of closely spaced, independent and linear
elastic springs. As this Winkler model suffers from the deficiency of
assuming that no interaction takes place between these soil springs, it
does not accurately predict the dynamic response of practical founda-
tions such as pavements or machine foundations [18]. In order to
overcome this deficiency, a two-parameter foundation model such as
Winkler-Pasternak foundation model is developed by PASTERNAK [19]
who introduced an additional shear layer in the Winkler model and thus
including the effect of shear interactions between the springs.
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SIMÃO [20] presented post-buckling bi-furcational analysis of thin-
walled prismatic members in the context of the generalized beam
theory. He presented a series of analytical models, based on the
generalized beam theory (GBT), investigating the buckling and post-
buckling behaviour of thin-walled prismatic cold-formed steel structur-
al members under compression and/or bending. The effect of warping
constraints on the buckling of thin-walled structures was studied by
Pignataro et al. [21]. They have considered various warping constraints
at the bar ends and the relevant buckling modes and loads are
numerically evaluated. Camotim et al. [22] presented a state-of-the
art report on the use of Generalized Beam Theory (GBT) to assess the
buckling behaviour of plane and space thin-walled steel frames. The
torsion of restrained thin-walled bars of open constant bi-symmetric
cross-section was investigated by Kujawa [23] using Castiglione’s first
theorem. The exact solutions were simplified by expanding them in a
power series. The effect of warping on the post-buckling behaviour of
thin-walled structures was investigated by Rizzi and Varano [24]. They
have used a direct one-dimensional model to describe the mechanical
behaviour of thin-walled beams to analyse the initial post buckling of
some sample framed structures. Kujava and Szymczak [25] studied the
elastic stability of axially compressed bar related to the cross–section
distortion using the principle of stationary total potential energy. The
aim of present paper is to study in detail, the effect of continuous
Winkler-Pasternak elastic foundation on the torsional post-buckling
behaviour of clamped uniform thin-walled beam of open cross-section.

2. Mathematical formulation of the problem

The purpose of this work is to study theatrically the elastically
torsional post buckling behaviour of statically indeterminate (or
hyperstatic) beam of I-section supported on Winkler-Pasternak founda-
tion as shown in Fig. 1(a). The beam under consideration is doubly
symmetric thin-walled beam of constant cross-section undergoing pure
torsion and subjected to an axial compressive load. The constant cross-
section of I-section is shown in Fig. 1(b).

Assumptions in the present study are, neglect the effects of (i) shear
deformations (ii) large and inelastic strains, and (iii) in-plane cross-
sectional deformations.

Considering ∅ as the angle of twist undergone by the thin-walled
open section beam, the torque developed in the beam T under non-
linear torsional deformation is given by

GC ECT = Ø′ − Ø′′′ + 2 EF(Ø′)S W
3 (1)

where Cw is the I h Cwarping constant = /2, = shear constant=f S
2

b t ht(1/3) (2 + )f f w
3 3 , the prime denotes differentiation with respect to z,

E the Young’s modulus, G the shear modulus, IR the fourth moment of
inertia about the shear centre, IPC the half of the polar moment of
inertia about the shear center and F is a constant depending on cross-
sectional properties of the beam defined as I I AF = − ( / )R PC

2.

Further, the reaction offered by the foundation (FR) is given by

K KFR = Ø − Ø″w P (2)

where Kw is the Winkler foundation modulus and KP is the modulus of
Pasternak foundation.

Considering a thin – walled doubly symmetric I-beam as shown in
Fig. 1(a) and (b) having web and flange thickness tf and tw respectively,
height between the centre lines of the flanges, h, flange width bf , and
flange and web thickness being assumed as small compared with height
h, i.e., t h≪f and t h≪w , the geometric properties in Eq. (1) can be
evaluated as follows [6]

I
h t b h t b t b h t

=
320

+
32

+
160

+
48R

w f f f f f f
5 4 5 3 2

(3)

where

I h t b t b h t= 1
24

( + 2 + 6 )PC w f f f f
3 3 2

(4)

The total potential energy, consisting of the strain energy of
deformation of the beam, the work done by the external axial

Nomenclature

A Area of cross-section and length of the beam
L Length of the beam
G Shear modulus
E Young’s modulus
∅ Angle of twist
x z( ) Normal function of angle of twist
z Distance along the length of beam
CW Warping constant
CS Torsion constant
K Warping parameter
Kw Winkler foundation modulus
Kp Pasternak foundation modulus

P Axial compressive load
Pcr Linear buckling load
P*cr Non-linear buckling load
σ P A/ , axial compressive stress
K2 GC L EC/S w

2 Warping parameter
∆2 σI L EC/P w

2 ; load parameter
∆cr Linear bucking load parameter
∆*cr Non-linear bucking load parameter
F I I A− ( / )R PC

2, cross-sectional property
IR Polar moment of inertia of beam, also IPC=1/2IP
δ F C/ w
λ2 K L EC/w w

4 Winkler foundation parameter
ξ2 K L EC/p w

2 Pasternak foundation parameter

Fig. 1. (a) Clamped beam resting on Pasternak foundation. (b) American steel thin-walled
I-beam.
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compressive load and the reaction offered by the continuous elastic
foundation, is given by [10,14,19].

∫V EC GC σI K EF

K dz

= [ (∅′′) + ( − + )(∅′) + (∅′)

+ (∅) ] = 0

L
W S P P

w

1
2 0

2 2 4

2
(5)

The fundamental differential equation resulting from the Euler
condition of stationary potential energy given by Eq. (5) can be
expressed as

EC EF GC σI K K∅ − 6 (∅′) ∅′′ − ( − + )∅′′ + ∅ = 0W
iv

S P P w
2 (6)

σ P Awhere = / is the axial compressive stress acting on the beam due to

load P. (7)

The general solution of Eq. (6) with the clamped boundary
condition can be obtained by numerical methods using computer
techniques. Here, the Galerkin’s technique is used to obtain the
approximate solution.

Eq. (6) can be re-written in non-dimensional form as

δ K ξ λ∅ − 6 (∅′) ∅′′ − ( − ∆ + )∅′′+ 4 ∅ = 0iv 2 2 2 2 2 (8)

Here, the parameter δ= .F
CW

To solve Eq. (6) by Galerkin’s method,
the angle of twist, Z∅( ) is assumed to be of the form

Z βx Z∅( ) = ( ) (9)

where β is the torsional amplitude. The approximate function Z∅( ) is
assumed to satisfy the boundary conditions. On substituting Eq. (9) in
(8), the error function, ϵ can be estimated as follows

β x β δ x x K ξ x λ xϵ = [ − 6 ( ′) ′′ − ( − ∆ + ) ′′+ 4 ]iv 2 2 2 2 2 2 (10)

In order to minimize the error ϵ, the Galerkin’s integral is given by
the following equation:

∫ x z dZϵ ( ) = 0
0

1

(11)

Substituting Eqs. (10) into Eq. (11), the expression for the torsional
post-buckling load for a thin-walled beam of open section can be
obtained as

⎛
⎝⎜

⎞
⎠⎟

⎛
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I
I

β δ
I
I

λ
I
I

∆* = ( + ) + + 6 − 4cr
2 2 2 1

3
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3 (12)

where

∫ ∫ ∫ ∫I x xdz I x x xdz I x xdz I x dz= ; = ( ′) ″ ; = ″ ; =iv
1
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2

3
0

1
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(13)

The case considered here is a beam with clamped edge on both the
ends. The boundary conditions associated with clamped edges are:

ZØ = 0; Ø′ = 0 at = 0,
where the non − dimensional beam length Z = (z/L) (14)

ZØ = 0; Ø′ = 0 at = 1 (15)

We assume the following function for x(Z) which satisfies the clamped
boundary conditions given by Eqs. (14) and (15) as

x Z β cos πZ( ) = (1 − 2 ) (16)

Evaluating the integrals I1,I2,I3 and I4 given in Eq. (13) utilising the
function given in Eq. (16) and substituting the same in Eq. (12) we
obtain the expression for the critical post-buckling load as

K ξ π λ
π

π δβΔ* = + + 4 + 3 + 6cr
2 2 2 2

2

2
2 2

(17)

The corresponding linear torsional buckling load for a clamped beam is
given by

K ξ π λ
π

∆ = + + 4 + 3
cr
2 2 2 2

2

2 (18)

Therefore, the ratio of the nonlinear to linear buckling load can be
expressed as

P
P

π δβ π K ξ π λ
*

=
∆*

∆
= 1 +(6 )/[ ( + + 4 ) + 3 ]

cr

cr

cr

2

2
4 2 2 2 2 2 2

(19)

In the absence of Pasternak elastic foundation, i.e., ξ = 0, Eq. (19)
reduces to

P
P

π δβ π K π λ
*

=
∆*

∆
= 1 + 6 /[ ( + 4 ) + 3 ]

cr

cr

cr

2

2
4 2 2 2 2 2

(20)

In the absence of an Winkler elastic foundation, i.e., λ = 02 , Eq. (20)
reduces to

P
P

π δβ π K π
*

=
∆*

∆
=1 + 6 /[ ( + 4 )]

cr

cr

cr

2

2
4 2 2 2 2

(21)

3. Results and conclusions

Consider a doubly symmetric I-beam (see Fig. 1(b)) for the analysis
with the following dimensions (all dimensions are in mm):

Length of the beam (L)=760; Web thickness t( w)=2.13;Flange
thickness t( f )=3.11; Flange width b( f )=31.55; Depth of the beam d( )
=72.76; Distance between center lines of flanges = h=69.65;.

The non-dimensional parameters K and δ are determined from the
beam properties and obtained as K = 3.106 and δ = 1.1095. The ratio of
nonlinear buckling load to linear buckling load can be determined from
Eq. (20). Arithmetical values of the ratio of nonlinear buckling load to
linear buckling load P P( */ )cr against values of torsional amplitude β( ) for
different values of Winkler stiffness parameter λ( ) and Pasternak
stiffness parameter ξ( ) are obtained using Eq. (20).

The values of the ratio of nonlinear buckling to linear buckling loads
P P( */ )cr against torsional amplitude β( ) for various values of Winkler
stiffness parameter λ( = 0,5,10,15,20,25 & 30) by keeping Pasternak
stiffness parameter constant ξ( = 0) are obtained and results are plotted
in Fig. 2. Similarly, the values of the ratio of nonlinear buckling to
linear buckling loads P P( */ )cr against torsional amplitude β( ) for various
values of Winkler stiffness parameter λ( = 0,5,10,15,20,25 & 30) by
keeping Pasternak stiffness parameter constant ξ( = 25,50,75 & 100)
are obtained and the resulting plots are given in Figs. 3–6. The selected
values of Winkler and Pasternak stiffness parameters (λ ξ& ), provide a
wide range of foundations characteristics varying from no torsional
stiffness to high torsional stiffness values. It is observed from the Fig. 2,
that the ratio of nonlinear buckling load to linear torsional buckling
load P P( */ )cr increases with increasing values of the torsional amplitude

Fig. 2. The effect of elastic foundation (for various values of Winkler stiffness parameter,
λ, with Pasternak stiffness parameter, ξ=0) on torsional post-buckling behaviour of
clamped thin-walled beam of open section.
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β( ) for a given values of Winkler stiffness parameter
λ( = 0,5,10,15,20,25 & 30) by keeping Pasternak stiffness parameter,

ξ = 0. The equilibrium configurations in the torsional post-buckling
region exist only for axial compressive loads in excess of the critical
load of small deflection theory. It is also observed that for lower values
of , the nonlinear buckling load increases rapidly as β increases. Also, as
λ increases, the nonlinear buckling load decreases as β increases as
shown in Figs. 2–6. Also, as λ increases, the curves become flatter
indicating that the influence of β on nonlinear buckling load becomes
gradually less significant.

From the results presented in Figs. 2–6, we can easily observed that
the ratio of the nonlinear to linear torsional buckling load P P( */ )cr
increases consistently with increasing values of torsional amplitude β( ).
The values of ratio of the nonlinear to linear torsional buckling load
P P( */ )cr increases with increasing values of the torsional amplitude β( )
for various values of Winkler stiffness parameter, λ, as Pasternak
stiffness parameter, ξ increases from 0 to 100. Also, for various values
ofλ, the influence of β on nonlinear buckling load becomes gradually
less significant as ξ increases.

The percentage variation of the ratio of nonlinear to linear buckling
load P P( */ )cr as β varies from 0.1 to 1, with Winkler stiffness parameter,
λ, for various values of Pasternak stiffness parameter,
ξ( = 0,25,50,75 & 100) is computed and shown in Fig. 7. The percentage
increase of the ratio of nonlinear to linear buckling load P P( */ )cr is more
for ξ = 0 and decreases with increase inλ. Also, the percentage variation
is less significant as ξ increases.

The values of the ratio of nonlinear to linear buckling loads P P( */ )cr
against torsional amplitude β( ) for various values of Pasternak stiffness
parameter in the range ξ( = 0,5,10,15,20,25 & 30) are obtained by
keeping Winkler stiffness parameter constant λ( = 0) are obtained and
results are plotted in Fig. 8. Similarly, the values of the ratio of
nonlinear to linear buckling loads P P( */ )cr against torsional amplitude
β( ) for various values of Pasternak stiffness parameter
ξ( = 0,5,10,15,20,25 & 30) by keeping Winkler stiffness parameter con-
stant λ( = 25,50,75 & 100) are obtained and the resulting plots are
shown in Figs. 8–12.

It can be easily observed from the Fig. 8, that the ratio of nonlinear
to linear torsional buckling load P P( */ )cr increases with increasing
values of the torsional amplitude β( ) for a given values set of values
of Pasternak stiffness parameter ξ( = 0,5,10,15,20,25 & 30) by keeping

Fig. 3. The effect of elastic foundation (for various values of Winkler stiffness parameter,
λ, with Pasternak stiffness parameter, ξ=25) on torsional post-buckling behaviour of
clamped thin-walled beam.

Fig. 4. The effect of elastic foundation (for various values of Winkler stiffness parameter,
λ, with Pasternak stiffness parameter, ξ=50) on torsional post-buckling behaviour of
clamped thin-walled beam.

Fig. 5. The effect of elastic foundation (for various values of Winkler stiffness parameter,
λ, with Pasternak stiffness parameter, ξ=75) on torsional post-buckling behaviour of
clamped thin-walled beam.
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Fig. 6. The effect of elastic foundation (for various values of Winkler stiffness parameter,
λ, with Pasternak stiffness parameter, ξ=100) on torsional post-buckling behaviour of
clamped thin-walled beam.

Fig. 7. The percentage variation of the ratio of nonlinear to linear buckling load P P( */ )cr
as β varies from 0.1 to 1, with Winkler stiffness parameter, λ, for different values of
Pasternak stiffness parameter, ξ=0,25,50,75 & 100).
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Winkler stiffness parameter, λ = 0. It is also observed that for lower
values of , the nonlinear buckling load increase rapidly as β increases.
Also, as ξ increases, the nonlinear buckling load decreases as β
increases as shown in Figs. 8–12. Also, as ξ increases, the curves
become flatter indicating that the influence of β on nonlinear buckling
load becomes gradually decreases.

From the Figs. 8–12 presented, it can be also observed that the ratio
of the nonlinear to linear torsional buckling load P P( */ )cr increases with
increasing values of torsional amplitude β( ). The values of the ratio of
nonlinear to linear torsional buckling load P P( */ )cr can be seen to be
increasing with increasing values of the torsional amplitude β( ) for

various values of ξ, as λ increases from 0 to 100. Also, for different
values of ξ, the influence of β on nonlinear buckling load becomes
gradually less significant as λ increases.

The percentage variation of the ratio of nonlinear to linear buckling
load P P( */ )cr as β varies from 0.1 to 1, with Pasternak stiffness
parameter, ξ, for various values of Winkler stiffness parameter,
(λ=0,25,50,75 & 100) is computed and shown in Fig. 13. The percentage
increase of the ratio of nonlinear to linear buckling load P P( */ )cr is more
for λ = 0 and decreases with increase inξ. Also, the percentage variation
is less significant as λ increases.

The variation of the nonlinear buckling load with increasing values
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Fig. 8. The effect of elastic foundation (for various values of Pasternak stiffness
parameter, ξ , with Winkler stiffness parameter, λ=0) on torsional post-buckling behaviour
of clamped thin-walled beam.
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Fig. 9. The effect of elastic foundation (for various values of Pasternak stiffness
parameter, ξ , with Winkler stiffness parameter, λ=25) on torsional post-buckling
behaviour of clamped thin-walled beam.

Fig. 10. The effect of elastic foundation (for various values of Pasternak stiffness
parameter, ξ , with Winkler stiffness parameter, λ=50) on torsional post-buckling
behaviour of clamped thin-walled beam.
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Fig. 11. The effect of elastic foundation (for various values of Pasternak stiffness
parameter, ξ , with Winkler stiffness parameter, λ=75) on torsional post-buckling
behaviour of clamped thin-walled beam.

Fig. 12. The effect of elastic foundation (for various values of Pasternak stiffness
parameter, ξ , with Winkler stiffness parameter, λ=100) on torsional post-buckling
behaviour of clamped thin-walled beam.

Fig. 13. The percentage variation of the ratio of nonlinear to linear buckling load P P( */ )cr
as β varies from 0.1 to 1, with Pasternak stiffness parameter, ξ , for different values of
Winkler stiffness parameter, λ=0,25,50,75 & 100).
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of torsional amplitude for different values of λis more convergence (as ξ
increases from 0 to 100, shown in Figs. 2–6) than the variation of the
nonlinear buckling load with increasing values of torsional amplitude
for different values of ξ as λ increases from 0 to 100 (as shown in
Figs. 8–12). It is observed from the Eq. (19) that as δ increases the
nonlinear buckling load P* increases for constant values of β K ξ λ, , & .
It is also observed that the effect of increase in values of Warping
parameter, K , Pasternak stiffness parameter ξ, and/or Winkler stiffness
parameter λ is to decrease the nonlinear buckling load, P* considerably.
It is noticed that the rate of change in the nonlinear buckling load, P* is
gradually reduces due to increase in β λ& as ξ increases and for any
constant values of δK & (Refer Figs. 2–6). It is also observed that the
rate of change in the nonlinear buckling load P* is more significant due
to increase in β ξ& as λ increases and for any constant values of δK &
(Refer Figs. 8–12).
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