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Fingerprint matching from minutiae texture maps
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Abstract

The fingerprint matching using the original FingerCode generation has proved its effectiveness but it suffers from some limitations
such as the reference point localization and the recourse to the relative fingerprint pre-alignment stage. In this paper, we propose a new
hybrid fingerprint matching technique based on minutiae texture maps according to their orientations. Therefore, rather than exploiting
the eight fixed directions of Gabor filters for all original fingerprint images filtering process, we construct absolute images starting
from the minutiae localizations and orientations to generate our weighting oriented Minutiae Codes. The extracted features are invariant
to translation and rotation, which allows us avoiding the fingerprint pair relative alignment stage. Results are presented demonstrating
significant improvements in fingerprint matching accuracy through public fingerprint databases.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Biometric are automated methods of recognizing a
person based on his/her physical or behavioral charac-
teristics. Nowadays, many commercial applications use
fingerprint, face, iris, hand geometry, voice and dynamic
signature. The fingerprint technique is the most solicited;
therefore, several fingerprint matching approaches have
been proposed in the last years. These approaches differ
with respect to the fingerprint features used for matching.
We can distinguish three categories: minutiae-based match-
ing [1–3], correlation-based matching [4,5] and texture-
based matching [6–10]. The first category is used widely;
but recently, the two others are receiving considerable in-
terest since their hybridization with the first category seems
to be a promising way to improve the fingerprint matching
for identification and verification systems accuracy [11].

The fingerprint matching proposed in Ref. [6] describes
fingerprints through their macro-features. This approach
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uses the circular tessellation of the filtered images centered
at a reference point to generate eight-dimensional features
maps and computes their average absolute deviation (AAD)
features (FingerCodes). Hence, the authors use some Finger-
Codes as feature maps (templates) for a possible matching
in case the fingerprint is oriented up to ±45◦. Obviously,
the matching performance of this method is directly propor-
tional to the localization of reference point and to the quality
of the fingerprint images. Moreover, the authors specified
that their method cannot guarantee that a reference point
will be found on every type of fingerprint image such as the
arch-type and for the poor quality fingerprint images.

Several attempts have been made to improve fingerprints
alignment and the localization reference point. The ap-
proach proposed by Ross et al. [11], where the fingerprint
alignment exploits the spatial coordinates of the reference
minutiae pair, resulted in the best alignment of the template
and input fingerprint images. Other approaches were pro-
posed in Refs. [7,12] to generate a unique reference point for
robust localization. However, these methods used the
rotation-invariant reference point location and combined
the direction features in order to improve the overall match-
ing performance. Other authors have used the generalized
Hough transform (GHT) for point pattern matching [13,14].
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The fingerprint alignment problem still persists because
the preceding approaches do not avoid the relative pre-
alignment stage to recover the geometric transformation
(generally translation and rotation) between the template
and the input fingerprint. So, this stage remains a difficult
task, especially when the database contains a large amount
of minutiae features extraction errors. To avoid the relative
pre-alignment, some authors perform minutiae matching
locally [15,16]. Others propose to try to match minutiae
globally [17]. They introduce an intrinsic coordinate sys-
tem based on portioned regular regions defined by the
orientation field and the minutiae are defined with respect
to their position in this coordinate system. This approach
has some practical problems such as reliably partitioning
the fingerprint in regular regions and unambiguously defin-
ing intrinsic coordinate axes in poor quality fingerprint
images [18].

In order to overcome the problems of this relative pre-
alignment stage, we propose a new fingerprint matching
approach from invariant texture features which produces the
matching method with the absolute pre-alignment obtained
from the minutiae features. In other words, we characterize
each fingerprint by a FingerCode which is generated with
respect to individual minutiae according to minutia local-
ization and orientation rather than exploiting the reference
point as the original approach. Additionally, we reinforce
these feature vectors by weighting the AAD features of sec-
tors according to the presence of minutiae in these sectors
in order to have a hybrid fingerprint matching. Thus, this
manner of generation produces the invariant FingerCode
to the geometric transformations and avoids the relative
fingerprint pre-alignment stage. Results are presented
demonstrating significant improvements in fingerprint
matching accuracy through the fingerprint databases. In
addition, our approach is able to deal with partial finger-
print, where sometimes, reference point cannot be reliably
detected, or it is close to the border in poor quality image.

This paper is organized as follows: Section 2 introduces
the oriented minutiae codes which are exploited in Section 3
for our texture-based fingerprint matching algorithm. Fi-
nally, Section 4 presents the performance and limits of our
matching approach.

2. Minutiae texture maps

There are two basic types of minutiae extraction meth-
ods which exploit the binarized or the gray-scale fingerprint
images. The first technique transforms the gray level finger-
print images into binary images on which a thinning pro-
cess is applied [2]. The minutiae are then extracted from
the thinned fingerprint images. The other method exploits
the direct gray-scale images extraction which is more effi-
cient than the first one [19]. For feature vector extraction,
we use the filter-bank-based as compact fixed length feature
vector (FingerCode) introduced in the original approach [6].

Fig. 1. The convention ridge orientation.

But, our generation utilizes the localization and the direc-
tion information that characterizes the oriented flow pattern
of each detected minutia in the two stages: reference point
localization and its oriented FingerCode generation starting
from the minutia orientation.

2.1. Convention minutiae orientation

Thus, for each detected minutia, the following parameters
are recorded:

1. x and y coordinate of the minutia point.
2. � the minutia orientation which is defined as the local

ridge-valley direction.

Although the ridge-valley orientation values have the
range

[−�
2 , �

2

]
in the classical orientation estimate,1 the

minutia in our method must be redirected into the range
[−�, �] to increase its discrimination. For that, we associate
the ridge orientation with their types (i.e. ends abruptly
and converges bifurcation). For this reason, we defined a
convention as shown in Fig. 1. Using this convention, we
can say that two ending ridges of opposite directions � and
� + � are not both along a line of orientation � if the fixed
sense ridge-valley orientations are opposite. Thus, in our
approach, the ridge-valley orientation values have the range
[−�, �].

2.2. Interest minutiae zone determination

In our approach, the reference point is usually selected as
the minutia point extracted from fingerprint. Each minutia
texture map represents the original Fingercode. Therefore,

1 We have chosen to implement the method introduced in Ref. [20].
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Fig. 2. The interest minutia zone.

the tessellation generation can be summarized in the follow-
ing steps:

1. Determination of the region of interest for the local fin-
gerprint image surrounding each minutia. This region,
called interest minutia zone (IMZ), contains a number
of fingerprint features (minutiae) (Fig. 2).

2. Tessellation of the interest minutia zone. This sub-
region is determined by a circular tessellation using
80-dimentional vector (16 ∗ 5 sectors: S0 through S79)

used in the original approach [6]. But our tessellation
is invariant to the geometric transformations and avoids
the fingerprint relative pre-alignment stage as shown in
Fig. 3. The original reference point method is, therefore,
not very robust with respect to errors in the location of
this point as illustrated for the same fingerprint images
in Fig. 4.

3. Normalization of the interest minutia zone. This step
normalizes the gray level intensities using constant mean
M0 and variance V0 separately for each sector to remove
the noise effects due to the sensor fingerprint capture.
Thus, we adopt the same values as in the original ap-
proach [6] using both M0 and V0 to a value of 100.

2.3. Interest minutiae zone filtering

The interest minutia zone is filtered in eight directions
using a bank of Gabor filters. The only difference between
our approach and the original one lies in the choice of
the Gabor filters directions. The original approach uses

Fig. 3. The invariant IMZ to the geometric transformation.

Fig. 4. Reference point location: (a) Original reference core, (b) minutia
core.

eight fixed directions (0◦; 22.5◦, 45◦, 57.5◦, . . . , 157.5◦)
whereas but our approach adapts these eight directions
according to the minutia orientation. In other words, the
first direction of the eight Gabor filters corresponds to the
minutia orientation. For example, if we have 65◦ for the
orientation minutia, the eight directions of Gabor filter
are 65◦, 87.5◦, 110◦, 132.5◦, 155◦, 177.5◦, 20◦ and 42.5◦.
Thus, the filtering process produces a set of eight filtered
images according to each minutia orientation that charac-
terizes each fingerprint by its own features (the minutiae
orientations). The original approach uses Gabor filter that
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has the following general form in the special domain:

G(x, y, f, �) =
{

−1

2

[
x′2

�2
x

+ y′2

�2
y

]}
cos(2�f x′), (1)

x′ = x sin(�) + y cos(�),

y′ = x cos(�) − y sin(�),

where f is the frequency of the sinusoidal plane wave along
the direction � (also the minutia orientation) with respect
to the x-axis, and �x′ and �y′ are the standard deviations
of the Gaussian envelope along x′ and y′-axis, respectively.
We have chosen the same parameters values as the original
approach [6] (f = 0.1; �x′ = �y′ = 4.0).

2.4. The oriented minutia code generation

After filtering the interest zone generation, we determine
the oriented minutia code. Around each minutia point, five
concentric circular regions of 20 pixels wide which repre-
sent the inter-ridge distances are defined and each region is
divided into 16 sectors as defined in Ref. [6].

Thereafter, we generate the OMC which represents eighty
features for each of the eight filtered images according to
each minutia mc orientation. This provides a total of 640
(80 × 8) because our approach uses a feature vector which
contains the magnitude value of the original AAD from the
mean of the interest minutiae zone (80 sectors). An exam-
ple of OMC is shown in Fig. 6, where the disks correspond
to the eight Gabor filtered images according to the minutia
orientation value equal to 15◦. Our OMC generation pro-
duces invariant feature vector because this generation starts
from the minutia orientation while going clockwise to the
other sectors. For this reason, the original collection of all
the sectors Si will be slightly modified by starting from the
minutia orientation �mc as follows:

Si =
{

(x, y)|b(Ti +1)�r < b(Ti +2), �i ��< �i+1,

1�x�N, 1�y�M,

}
(2)

where k represents the number of sectors and the angle for
each sector Si must lie between �i = �mc + (i mod k)(2�/k)

and �i+1 = �mc + ((i + 1)mod k)(2�/k) instead of �i =
((i + 1)mod k)(2�/k) and �i+1 = ((i + 1)mod k)(2�/k) as
defined in the original approach [6].

Thus, this manner of generation allows obtaining a feature
vector which is practically invariant to geometrical transfor-
mations (rotation and translation). According to the conven-
tion (Fig. 1), each OMC remains unchanged because the gen-
eration uses absolute pre-alignment according to the minutia
orientation. For example, the OMCs of the two fingerprints
illustrated in Fig. 3, are shown in Fig. 5.

Fig. 5. The invariant OMCs generation.

The novelty in our approach is to assign weights to sec-
tors containing minutiae which will permit to distinguish
better two textures. This assignation consists of weighting
the AAD (noted AADP) features of sectors according to the
presence of minutiae in these sectors. In other words, the
AAD of the sector that contains a minutia is multiplied by a
weighting factor W in order to differentiate between sectors
that contain the minutiae features and the other sectors; and
those that contain a certain proportion of background pix-
els are labeled as background sectors and the corresponding
AAD feature value is set to 0. This new technique character-
izes sectors of the sectorization by minutiae localization in
the fingerprint images which produces a hybrid fingerprint
matcher

AADP (Si)=
{AAD(Si) ∗ W If sector contains minutia,

AAD(Si) Else,
0 Background sector.

(3)

As a result, we obtain for the minutia an oriented Finger-
Code that describes its local and global characteristics. It
contains the feature vector for each sector Si (i =0, . . . , 79)

which has the weighted average absolute derivation from the
mean as defined in Ref. [6].

3. Fingerprint matching algorithm

The fingerprint matching task is more difficult and
the major existing approaches do not avoid the absolute
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Fig. 6. The matching process.

pre-alignment of the input fingerprint and the template im-
ages. The focus of this section is to discuss our algorithm
for automatic fingerprint matching which is performed
by texture-based pattern matching using the proposed
OMCs. When verification or identification process is nec-
essary, the OMCs are extracted from the user’s presented
finger, and they are compared to the OMCs (templates)
from the database, as illustrated by the flow chart in
Fig. 6.

Let T ={mi, i = 1 · · · n} and I ={m′
j , j = 1 · · · m} be the

minutiae lists extracted from the template and input finger-
print, respectively.

Let F
�i
mi

(x, y) be the �i-direction filtered image for finger-
print image, where �i represents the minutia mi direction.
We define a feature vector for each minutia mi according to
their F

�i
mi

(x, y) as V
�i
mi

. It contains the weighted magnitude
value of the AAD according to the minutiae presence for
any sector Si (i = 0, . . . , 79).

The similarity of paired minutiae is based on the mini-
mization of the distances between the OMCs. Let V �

mi
and

V �
mj

denote the feature vectors of a template minutia mi and
the input minutia mj , respectively. We define distance Dk

between the component pairs k of the two feature vectors
V �

mi
and V �

mj
as follows:

Dk(V
�
mi

, V �
mj

) = (V �
mi

(k) − V �
mj

(k))2

�2(V �
mi

) + �2(V �
mj

)
. (4)

As a consequence, the resulting distance between two fea-
ture vectors V �

mi
and V �

mj
can be chosen as

D(V �
mi

, V �
mj

) =
k=79∑
k=0

Dk(V
�
mi

, V �
mj

). (5)

Then, the distance between the two OMCs according to
the minutiae mi and mj is defined by the following formula:

D(mi, mj ) =
k=7∑
k=0

D(V �k
mi

, V �k
mj

), (6)

where �k represents the eight directions using a bank of
Gabor filters.

The score matching degree will then be established by
the minimization of the distances of each paired minutia mi

belonging to the template fingerprint and all minutiae m′
j

for j = 0 . . . m belonging to the input fingerprint. This is
defined by the following formula:

SM = Min
j=0...m

(D(mi, m
′
j )). (7)

It is very difficult, if not altogether impossible, to obtain
performance from minutiae extraction task owed to the poor
quality of fingerprint images. So, the minutiae location er-
rors, caused by the orientation field estimation, generate im-
proper OMCs. The two images (Fig. 7) show the impact of
minutia localization and orientation errors on the sectors in
the sectorization process construction. So, the localizations
of the minutiae in the sectors are completely different in the
two tessellations. This produces the different correspond-
ing OMCs computed from these sectorizations because the
AADP of the sectors by the weighting factor W is following
the adherence of these minutiae in the sectors. Fig. 7 shows
this situation of tessellation characterization well. For ex-
ample, the AAD of the sector S7 is weighted by weighting
factor in the input image tessellation and the AAD of the
sector S24 is weighted in the template image tessellation.
Besides, these orientation errors essentially generate some
different features for the external sectors. Otherwise, there
errors produce a shift of a sector in the circular tessellation
and feature vector characterization. For example, if we have
an orientation error equal to +15◦, all sectors will be shifted
by one position: the sector S0 becomes the sector S1 and so
on.

To address this problem, we propose stage consol-
idation. Hence, we introduce two variation techniques
to ensure a good extraction of fingerprint features. Let
us note that these variations do not represent the align-
ment of the two fingerprints but the corrections of the
minutiae localization and orientation errors caused by the
extraction algorithm. The first one is the minutia orien-
tation variation of ±��◦ to correct orientation extrac-
tion errors as shown in Fig. 8. This variation allows the
correction of the weighted AADs of the sectors that be-
long to the same concentric circular regions (same band).
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Fig. 7. The influence of minutia features extraction on the OMC generation: (a) Input image, (b) template image.

Fig. 8. The minutia variation.

The second variation is the minutia localization variation
on the ridge segment of which belongs the minutia fol-
lowing the orientation axis. This variation has a larger
effect in correcting errors on adjacent bands while posi-

tioning minutiae in the adequate sectors to compute the
weighted AADs. Hence, this variation compensates the
minutia localization errors compared to that introduced in
Ref. [21].

In the continuation of this section, we are going to clarify
these two variation techniques.

Let us reconsider the preceding input fingerprint image
in Fig. 7(a). If the minutia extraction module produces 90◦
as a minutia orientation, we use thirty-one (31) possible
orientations for variation errors in the range [−15, +15] with
1◦ as variation step (75◦, 76◦, . . . , 90◦, . . . ,+104◦, 105◦).
So, the 15th variation of the minutia orientation according
to the clockwise sense (−15◦) (image (a), Fig. 9) and a
displacement of seven pixels in the sense of the minutia
orientation give us the tessellation of template fingerprint
image (image (b), Fig. 9) that corresponds to the template
fingerprint image in Fig. 7(b).

Thus, for each minutia pairing from template finger-
print, we need various OMCs computed from some filtered
Gabor images. Finally, these variations manage the minutia
extraction errors for the weighted AAD of the set of sectors
located in the bands of the interest minutia zone during the
feature vector generation.
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Fig. 9. The minutia localization and orientation correction.

Table 1
EERs estimated on DB1 FVC2000 for different orientation variations

�� 0◦ ±1◦ ±2◦ ±3◦ ±7◦ ±9◦

DB1 7.1 6.73 6.39 6.21 6.01 5.99

4. Experimental results

In order to confirm the effectiveness of our proposed fin-
gerprint texture-based matching approach, we carried out
experiments of the minutiae textures verification. Conditions
of the experiments are as follows. All experiments discussed
in this paper are conducted on a Pentium IV 3.6 GHz and
exploit the DB1 and all databases from fingerprint databases
used in the Fingerprint Verification Competition FVC2000
and FVC2002 [18], respectively. So, each base contains
100 distinct fingers and each finger has eight impressions
(8∗100). During our experiments, we have used three bands
solely for tests (48 sectors).

To expose the impact of the minutiae orientation varia-
tions on the accuracy of fingerprint matching, we varied the
minutiae orientations and computed the corresponding false
accept rates (FAR), false reject rates (FRR) and their cor-
responding equal error rates (EER) are plotted in Fig. 10
only for the DB1 FVC2000 with orientation minutia varia-
tion �� = ±9◦. So, the use of the variation errors produces
more effective results. The results in Table 1 show that the
use of a large range of minutia orientation errors caused by
the extraction module yield an EER less than 6%. Fig. 11
graphically illustrates the genuine and imposter distributions
in this case (an orientation variation �� = ±9◦).
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Fig. 10. EER-curve on DB1 FVC2000 obtained with �� = ±9◦.

During the experiments, we have observed that the EER
increase from a minutia orientation variation of 10◦. It means
that our minutia extraction module produces orientation er-
rors close to 10◦. Besides, the effectiveness of our method
decreases with an incorrect minutia localization which is
caused by the minutiae extraction module (Approximately
11% of extraction errors between the missing and false
minutiae), in particular the last one that entails an incorrect
tessellation for the matching process. Fig. 12 shows the com-
parison of the corresponding EER with different number of
matching minutiae orientation variations (0◦, 5◦ and 9◦).
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Table 2
Average results over all databases FVC2002

DB1-a DB2-a DB3-a DB4-a All
databases

EER (%) 4.27 2.61 10.63 5.12 5.19
Average enrollment time (s) 5.36 4.71 5.94 5.04 5.31
Average matching time (s) 3.15 2.02 3.01 2.87 2.42

The matching performances achieved on all fingerprint
databases FVC2002 are shown in Table 2 with minutia lo-
calization errors in the range ±7 pixels (two pixels as vari-
ation step) and �� = ±9◦ as orientation variations.

Obviously, the experiments conducted over a sample of all
fingerprint image bases indicate that the improving matching

Table 3
Ranking of our approach on all databases of the Top 31 participants in
FVC2002

DB1-a DB2-a DB3-a DB4-a All databases

Rank 22 16 23 19 17

accuracy is directly proportional to the minutiae orientation
range.

On the other hand, our approach consumes more time in
the enrollment and the matching process. It is due to the
OMCs generation phase of all minutiae belonging to the in-
put fingerprint images. However, each fingerprint template
in the databases is pre-aligned, independently of the others
and stored as the feature vectors. So, each template finger-
print in the database is represented by the oriented minutiae
codes that represent all minutiae belonging.

We will present in Table 3, the rank of our approach com-
pared to the results obtained by the different algorithms pre-
sented to the FVC2002 competition from the same bases
(according to the EER) [22].

We note that an EER of 5.19% is quite acceptable in
comparison with those of the results in Ref. [22]. So, our
matching algorithm is ranked according to the EER in the
13th, the fourth and in the second position in relation to
all algorithms coming from industry, others and academies,
respectively.

As comparison to the original approach [6], we give here
errors of the reference point localization and ERR reported
in Ref. [23]. Therefore, to evaluate the found original ref-
erence points on all databases FVC2002, their locations are
further computed by an original method. The results show
that 11.75%, 9.25%, 21.62% and 14.27% of the reference
points were not correctly located (Fail to enroll) on DB1-
a, DB2-a, DB3-a and BD4-a, respectively. The remaining
error cases are due to the noise or to the fact that the ref-
erence point is close to the border in poor quality images
or to scars near the reference points in particular DB3-a.
Moreover, the ERR for all databases FVC2002 are 12.5%,
11.7%, 29% and 18% as reported in Ref. [23], respectively.
Then, our matching algorithm allows us obtaining improve-
ments in comparison to the original approach. Moreover, this
method is more effective compared to the one introduced in
Ref. [21] because it deals with the localization variation.

5. Conclusion

The conducted testing of a novel fingerprint matching
technique using the minutiae texture maps shows good cor-
respondence to the fingerprint identification. Our matching
algorithm avoids the use of the relative pre-alignment be-
cause we take advantage of the oriented minutiae codes
that are invariant to the geometric transformations. The use-
fulness of this approach was confirmed in the experiments



F. Benhammadi et al. / Pattern Recognition 40 (2007) 189–197 197

conducted here, which reveals that the identification results
are encouraging and our approach is promising. We project
to overcome the strong local or global deformations and to
propose a distributed matching algorithm for the minutiae
texture maps extraction to improve the computation times
of our matching approach.
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