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a b s t r a c t

I present a new method to compute a bit-parallel polynomial basis squarer for GFð2m
Þ generated by an

arbitrary irreducible polynomial using weakly dual basis. I apply the proposed method to irreducible

pentanomial and derive the explicit formulae for squarer. It is the first time that gives the explicit

formulae and an upper complexity bound of squarer for irreducible pentanomials. Moreover, such

formulae permit one to choose pentanomial for any odd mA ½19,2000� whose multiplier, as well as

squarer, can be performed more efficiently.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Arithmetic operations over finite field GFð2m
Þ are essential in a

great variety of cryptosystems and error correcting code applications.
Among them, multiplication and squaring are the most important
ones since other arithmetic operations, such as exponentiation and
inversion, can be performed using multiplication and squaring.

In this paper, I study squarer for GFð2m
Þ. Explicit formulae for

squarer have been presented when GFð2m
Þ is defined by irredu-

cible trinomial [1–3]. However, in the case of pentanomial, there
exist squaring formulae for only GFð2m

Þ defined by some special
pentanomials. Ref. [4] only shows that squaring using irreducible
pentanomials requires at most 4ðm�1Þ XOR gates. Ref. [5]
presented the complexity of squaring for some pentanomials.
Ref. [6] gives closed formulae of Montgomery squaring for type II
pentanomial xmþxnþ2þxnþ1þxnþ1 with an odd m.

In general, the previously proposed squaring needs the reduc-
tion steps. Such reduction steps are too complicated to derive
squaring formula for general pentanomial. I present a new
method to implement a bit-parallel polynomial basis squarer for
GFð2m

Þ generated by an arbitrary irreducible polynomial using
weakly dual basis. Recently, [7] proposed a bit-parallel shifted
polynomial basis multiplier for GFð2m

Þ using weakly dual basis. I
modify the proposed multiplier in [7] to implement squaring
operation. In particular, I derive the explicit formulae for squarer
when GFð2m

Þ is defined by irreducible pentanomial xmþxk3þ
ll rights reserved.
xk2þxk1þ1ð1rk1ok2ok3rm=2Þ and show that its complexities
are less than or equal to ð3mþ7k3�k2�3k1þ25Þ=2 XOR gates and
3TX , where TX is the delay of one XOR gate.
2. Bit-parallel polynomial basis squarer

2.1. Weakly dual basis

In this section, I give some definitions and properties of finite
fields in [7]. For an element bAGFð2m

Þ, the trace trðbÞ of b over
GFð2Þ is defined by trðbÞ ¼

Pm�1
j ¼ 0 b

2j

, which is a linear function
from GFð2m

Þ to GFð2Þ.

Lemma 1 (Fenn et al. [8, Lemma 1] or Lidl and Niederreiter

[9, Theorem 2.24]). For any linear function j from GFð2m
Þ to

GFð2Þ, there exists gAGFð2m
Þ corresponding to the linear function

j which satisfies that jðzÞ ¼ trðgzÞ for all zAGFð2m
Þ:

Definition 1. Let faig :¼ fa0, . . . ,am�1g and fbig :¼ fb0, . . . ,bm�1g be
bases for GFð2m

Þ and ga0AGFð2m
Þ. Then, the bases faig and fbig

are said to be weakly dual to each other with respect to g if
trðgaibjÞ ¼ dij for all 0r i,jom, where dij is the Kronecker delta
function, which is equal to 1 if i¼ j and 0 otherwise.

Lemma 2 (Fenn et al. [8, Theorem 2]). Every basis has a weakly

dual basis (WDB) with respect to any nonzero gAGFð2m
Þ.

Throughout this paper, I assume that GFð2m
Þ is defined by an

irreducible polynomial f(x) with a root a. Let ga0AGFð2m
Þ and

fbig :¼ fb0,b1, . . . ,bm�1g be the WDB of the polynomial basis (PB)
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faig :¼ f1,a, . . . ,am�1g with respect to g (see Lemma 2). It holds
that trðgaibjÞ ¼ dij for 0r i,jom. I use the notations bis and bn

i s to
denote the coordinates of an element B¼

Pm�1
i ¼ 0 biai ¼

Pm�1
i ¼ 0 bn

i bi

in GFð2m
Þ with respect to the bases faig and fbig, respectively. For

an element B¼
Pm�1

i ¼ 0 bn

i bi, I have

trðgajBÞ ¼ tr gaj
Xm�1

i ¼ 0

bn

i bi

 !
¼
Xm�1

i ¼ 0

bn

i trðgajbiÞ ¼ bn

j ð1Þ

for 0r jom. Consider the basis transformation matrix
ðdk,jÞ0rk,jom from the PB faig to the WDB fbig such that bj ¼

½1,a, . . . ,am�1�½d0,j,d1,j, . . . ,dm�1,j�
T ¼

Pm�1
k ¼ 0 dk,jak, where dk,jAGFð2Þ

for 0rk,jom. I have

dij ¼ trðgaibjÞ ¼
Xm�1

k ¼ 0
dk,jtrðgaiþkÞ

¼ ½trðgaiÞ,trðgaiþ1Þ, . . . ,trðgaiþm�1Þ� � ½d0,j,d1,j, . . . ,dm�1,j�
T

for 0r i,jom. These equations imply that

½b0,b1, . . . ,bm�1� ¼ ½1,a, . . . ,am�1�M�1,

where M is the m�m matrix whose entry Mi,j in the i-th row and
j-th column is defined by

Mi,j ¼ tiþ j for 0r i, jom ð2Þ

and tl :¼ trðgalÞ for lAZ. Moreover, for an element B¼Pm�1
i ¼ 0 biai ¼

Pm�1
i ¼ 0 bn

i bi in GFð2m
Þ:

½b0,b1, . . . ,bm�1�
T ¼M�1½bn

0,bn

1, . . . ,bn

m�1�
T : ð3Þ

2.2. New squarer method

Let A¼
Pm�1

i ¼ 0 aiai be an element in GFð2m
Þ. For the squaring

C :¼
Pm�1

i ¼ 0 ciai ¼
Pm�1

i ¼ 0 cn

i bið ¼ A2Þ of A, I have

cn

i ¼ trðgaiCÞ ¼ trðgaiA2Þ ¼
Xm�1

j ¼ 0

trðgaiþ2jÞaj ¼
Xm�1

j ¼ 0

tiþ2jaj

for 0r iom from (1). Therefore

½cn

0,cn

1, . . . ,cn

m�1�
T ¼ K½a0, . . . ,am�1�

T ,

where K is the m�m matrix defined by

Ki,j ¼ tiþ2j for 0r i, jom:

From (3), I conclude that

½c0,c1, . . . ,cm�1�
T ¼M�1½cn

0,cn

1, . . . ,cn

m�1�
T ¼M�1K½a0, . . . ,am�1�

T : ð4Þ

Thus, in order to compute C, it suffices to compute the matrix

M�1K whose entries are either 0 or 1.
�

3. Squarer for irreducible pentanomial

In this section, I apply the proposed method to irreducible
pentanomial f ðxÞ ¼ xmþxk3þxk2þxk1þ1 with 1rk1ok2ok3r
m=2 and derive the explicit formulae of PB squarer. I divide into
two cases according to the cases k2r2k1 or 2k1ok2 and take the
different values for g according to each cases to easily compute
the inverse matrix M�1 of M.

3.1. The case k2r2k1

Assume k2r2k1. I choose gAGFð2m
Þ which corresponds to the

following linear function:

tl :¼ trðgalÞ ¼
1 if lAfk2�k1�1,k2�1g,

0 if lA ½0,m�1��fk2�k1�1,k2�1g:

(
ð5Þ
(Of course, it may be possible to choose different value for g.
From experience, I just choose such value g that the inverse
matrix M�1 is of simple form.) Let fbig be the WDB of the PB faig

with respect to g.

3.1.1. Squaring formulae

First, I compute trace value tl for 0r lr2m�2 to find the
inverse matrix M�1. Since alþal�mþk3þal�mþk2þ al�mþk1þ

al�m ¼ 0 for lZm, I have

tl ¼ tl�mþtl�mþk1
þtl�mþk2

þtl�mþk3
for lZm: ð6Þ

Using (5) and (6), I can compute tl for mr lo2m�k3 (i.e., 0r
l�mom�k3 and kir l�mþkiom�k3þki for 1r ir3Þ. Such trace
values tl can be computed by considering all values l such that at
least one of trace values in right side of (6) is 1: tl�m ¼ 13
l�mAfk2�k1�1, k2�1} and tl�mþk1

¼ 13 l�mþk1 ¼ k2�1. I
compute tl for lAfmþk2�k1�1,mþk2�1g. For example,
tmþk2�k1�1 ¼ tk2�k1�1þtk2�1þt2k2�k1�1þtk3þk2�k1�1 ¼ 1þ1þ0þ
0¼ 0. So I get that

tl ¼
1 if l¼mþk2�1,

0 if lA ½m,2m�k3�1��fmþk2�1g:

(
ð7Þ

Next, using (5)–(7), I compute tl for 2m�k3r lr2m�2 (i.e.,
m�k3r l�mom�2 and m�k3þkir l�mþkiomþki�2 for
1r ir3). I consider l such that at least one of trace values in
right side of (6) is 1: tl�mþk3

¼ 13l� mþk3 ¼mþk2� 13l¼

2m�k3þk2�1. I have t2m�k3þk2�1 ¼ tm�k3þk2�1þtm�k3þk2þk1�1þ

tm�k3þ2k2�1þtmþk2�1 ¼ 0þ0þ0þ1¼ 1. Therefore, I get that

tl ¼
1 if l¼ 2m�k3þk2�1,

0 if lA ½2m�k3,2m�2��f2m�k3þk2�1g:

(
ð8Þ

By (5), (7), and (8), the matrix M defined in (2) is given by

M¼
R1 Ok2�ðm�k2Þ

Oðm�k2Þ�k2
R2

" #
, ð9Þ

where Oi�j is the i� j zero matrix, Jl is the l� l exchange matrix
defined by ðJlÞi,l�1�i ¼ 1 for 0r io l and 0 otherwise,

R1 ¼ Jk2
þ

Jk2�k1
Oðk2�k1Þ�k1

Ok1�ðk2�k1Þ
Ok1�k1

" #
and

R2 ¼ Jm�k2
þ

Oðm�k3Þ�ðm�k3Þ
Oðm�k3Þ�ðk3�k2Þ

Oðk3�k2Þ�ðm�k3Þ
Jk3�k2

" #
:

Since k2�k1rk2=2 and k3�k2oðm�k2Þ=2, I can verify

R�1
1 ¼ Jk2

þ
Ok1�k1

Ok1�ðk2�k1Þ

Oðk2�k1Þ�k1
Jk2�k1

" #
and

R�1
2 ¼ Jm�k2

þ
Jk3�k2

Oðk3�k2Þ�ðm�k3Þ

Oðm�k3Þ�ðk3�k2Þ
Oðm�k3Þ�ðm�k3Þ

" #
:

So I obtain that

M�1 ¼
R�1

1 Ok2�ðm�k2Þ

Oðm�k2Þ�k2
R�1

2

" #
and M�1K ¼

K1

K2

K3

K4

2
66664

3
77775, ð10Þ

where
�
 K1 is the k1�m matrix with

ðK1Þi,j ¼ t2j�iþk �1 for 0r iok1,

2

K2 is the ðk2�k1Þ�m matrix with

ðK2Þi,j ¼ t2j�iþk2�k1�1þt2j�iþk2�1 for 0r iok2�k1,
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�
 K3 is the ðk3�k2Þ�m matrix with

ðK3Þi,j ¼ t2j�iþk3�1þt2j�iþm�1 for 0r iok3�k2,
�
 K4 is the ðm�k3Þ�m matrix with

ðK4Þi,j ¼ t2j�iþm�k3þk2�1 for 0r iom�k3
for 0r jom. In order to find the matrix M�1K in (10), I have to
compute the following trace values:
(a)
 tl for k2�k1r lr3m�k3þk2�3,

(b)
 tlþtlþk1

for 0r lr2mþk2�k1�3,

(c)
 tlþtlþm�k3

for k2r lr2mþk3�3.
Such computations are implemented similar to (7) or (8). I leave
the computation of trace values (a), (b), (c) for Appendix A.

Using (A.1)–(A.3) in Appendix A, I can locate the positions of
one of the matrices Ki for 1r ir4, and so compute ½c0, . . . ,cm�1�

T ¼

M�1K½a0, . . . ,am�1�
T . For the matrix

K1 ¼

tk2�1 tk2þ1 � � � t2mþk2�3

tk2�2 tk2
� � � t2mþk2�4

tk2�3 tk2�1 � � � t2mþk2�5

tk2�4 tk2�2 � � � t2mþk2�6

^ ^ � � � ^

tk2�k1
tk2�k1þ2 � � � t2mþk2�k1�2

2
6666666664

3
7777777775

,

I have tl¼1 for lAfk2�1,mþk2�1,2m�k3þk2�1,2m�1g [
f2mþk2�k1�1ifk1Z2g by (A.1). Let S1 be the set that consists of
the difference l�ðk2�1Þ of indices between tk2�1ð ¼ ðK1Þ0,0Þ and
tl such that ðK1Þs,t ¼ tl ¼ 1. Then S1 ¼ f0,m,2m�k3, 2m�k2g[

f2m�k1ifk1Z2g. I use the notation Se :¼ fjAS9jis eveng and So :¼

fjAS9jis oddg for any set S. Since ðK1Þ0,j ¼ tðk2�1Þþ2j and ðK1Þ1,j ¼

tðk2�1Þþ2j�1 for 0r jom, I have c0 ¼
P

jA Se
1
aj

2
and c1 ¼

P
jA So

1
aðjþ1Þ=2.

Moreover, since the entries of the first column of K1 except for
ðK1Þ0,0 are zero and ðK1Þs,t ¼ ðK1Þsþ2,tþ1 for 0rsrk1�3 and
0rtrm�2, I have

c0þ2i ¼
P

jASe
1

aiþ j=2 for 0r io
k1

2

� �

c1þ2i ¼
P

jASo
1

aiþðjþ1Þ=2 for 0r io
k1

2

� �
:

8>>>><
>>>>:
For the matrix K2, I have tlþtlþk1

¼ 1 for lA I2 in (A.2). Let S2 :¼

fl�ðk2�k1�1Þ : lA I2g be the set that consists of the difference
between k2�k1�1 and lA I2 (note that ðK2Þ0,0 ¼ tk2�k1�1þtk2�1

and ðK2Þs,t ¼ tlþtlþk1
¼ 1 for lA I2Þ. Then S2 :¼ fk1,m,mþk1,

2m�k3g [ f2m�k2ifk3a k2þk1,2m�k1ifk1Z2,k2a2k1,andk3 a
2k1,2m�k3þk1ifk3a2k1and k3ak2þk1,2m�k2þ k1ifk1þ2r
k2o2k1g. Similar to the matrix K1, I have

ck1þ2i ¼
P

jASe
2

aiþ j=2 for 0r io
k2�k1

2

� �

ck1þ1þ2i ¼
P

jASo
2

aiþðjþ1Þ=2 for 0r io
k2�k1

2

� �
:

8>>>><
>>>>:

ð11Þ

The conditional sentences in S1 (resp. S2Þ may be omitted if I
eliminate the elements in S1 (resp. S2Þ such that are greater than
2m�2 or appear twice. For example, if k3 ¼ k2þk1, then two
elements 2m�k2 and 2m�k3þk1 in S2 are equal. In that case, I
eliminate such two elements in S2. (In fact, two terms in the
summation (11) induced by same elements in S2 are eliminated.)
Then, I may simply rewrite

S1 ¼/0,m,2m�k3,2m�k2,2m�k1S,
S2 ¼/k1,m,mþk1,2m�k3,2m�k2,2m�k1,2m�k3þk1,2m�k2þk1S,

where the set o4 means the set that the elements in o4 which
appear twice or are greater than 2m�2 are eliminated. (See
Example.) Similar to above, I can write the formulae for the
coefficients ci for k2r iom as follows:

ck2þ2i ¼
P

jA Se
3
aiþ j=2 for 0r io

k3�k2

2

� �

ck2þ1þ2i ¼
P

jASo
3
aiþðjþ1Þ=2 for 0r io

k3�k2

2

� �
8>>><
>>>:

ck3þ2i ¼
P

jA Se
4
aiþ j=2 for 0r io

m�k3

2

� �

ck3þ1þ2i ¼
P

jASo
4
aiþðjþ1Þ=2 for 0r io

m�k3

2

� �
,

8>>><
>>>:

ð12Þ

where al :¼ 0 for lZm and

S3 :¼ /k2,m,mþk2�k1,mþk2,2m�k3,2m�k3þk2�k1,

2m�k3þk2,2m�k2,2mþk2�2k1S,

S4 :¼ /k3,m,mþk3�k2,mþk3�k1,mþk3,2m�k3,

2mþk3�2k2,2mþk3�2k1S:

Set S5 :¼ /k3,m,mþk3�k2,mþk3�k1,mþk3SðDS4Þ. Since al¼0
for lZm, (12) can be rewritten as follows:

ck3þ2i ¼

P
jASe

4
aiþ j=2 for 0r i/

k3

2

� �
P

jASe
5
aiþ j=2 for

k3

2

� �
r i/

m�k3

2

� �
,

8>>><
>>>:

ck3þ1þ2i ¼

P
jA So

4
aiþðjþ1Þ=2 for 0r io

k3

2

� �
P

jA So
5
aiþðjþ1Þ=2 for

k3

2

� �
r io

m�k3

2

� �
:

8>>><
>>>:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
3.1.2. Upper bound of complexity

I consider an upper complexity bound of the proposed squarer.
It is easily verified that 1r9Se

i 9r8 and 1r9So
i 9r8 for any

m,k3,k2,k1, and 1r ir5. So the time complexity of squarer is
ðmax1r ir5fdlog2ð9S

o
i 9Þe,dlog2ð9S

e
i 9ÞegÞTX r3TX by binary XOR tree.

And the space complexity is r

ð9Se
19�1Þ

k1

2

� �
þð9So

19�1Þ
k1

2

� �
þð9Se

29�1Þ
k2�k1

2

� �
þð9So

29�1Þ
k2�k1

2

� �

þð9Se
39�1Þ

k3�k2

2

� �
þð9So

39�1Þ
k3�k2

2

� �
þð9Se

49�1Þ
k3

2

� �

þð9So
49�1Þ

k3

2

� �
þð9Se

59�1Þ
m�2k3

2

� �
þð9So

59�1Þ
m�2k3

2

� �

r ð9S19�2Þ
k1

2

� �
þð9S29�2Þ

k2�k1

2

� �
þð9S39�2Þ

k3�k2

2

� �

þð9S49�2Þ
k3

2

� �
þð9S59�2Þ

m�2k3

2

� �

r
3mþ7k3�k2�3k1þ25

2
:

3.1.3. Example

I illustrate the formulae of the squarer for GFð2163
Þ defined

by f ðxÞ ¼ x163þx8þx6þx4þ1 with k1 ¼ 4,k2 ¼ 6, k3 ¼ 8, and
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2m�2¼ 324. I have

S1 ¼/0,163,318,320,322S¼ f0,163,318,320,322g,

S2 ¼/4,163,167,318,320,322,322,324S
¼ f4,163,167,318,320,324g,

S3 ¼/6,163,165,169,318,320,324,320,324S
¼ f6,163,165,169,318g,

S4 ¼/8,163,165,167,171,318,322,326S
¼ f8,163,165,167,171,318,322g,

S5 ¼ f8,163,165,167,171g

Then the coefficients ci of the squaring C ¼
P162

i ¼ 0 ciai ð ¼ A2 ¼

ð
P162

i ¼ 0 aiaiÞ
2
Þ can be written as follows:
�

Tab
Com

P

xm

ð1

x1

x1

xm

(m
c0þ2i ¼ aiþaiþ159þaiþ160þaiþ161 for 0r io2,

�
 c1þ2i ¼ aiþ82 for 0r io2,

�
 c4 ¼ a2þa159þa160þa162,

�
 c5 ¼ a82þa84,

�
 c6 ¼ a3þa159,

�
 c7 ¼ a82þa83þa85,
�
 c8þ2i ¼
aiþ4þaiþ159þaiþ161 for 0r io4,

aiþ4 for 4r io78,

(

�
 c9þ2i ¼ aiþ82þaiþ83þaiþ84þaiþ86 for 0r io77.
I note that c8þ2i can be rewritten by c8þ2i ¼ aiþ4þaiþ159 for
2r io4 since al¼0 for lZm. The terms aiþ159þaiþ161 in c0þ2i

may be reused in c8þ2i for0r io2. Also, c9 is computed reusing
the term a82þa83 in c7. Therefore, the space complexity of the
squarer is ð6þ3þ1þ1þ2þ8þ77 � 3Þ�5¼ 247 and the time
delay is 2TX by binary XOR tree (see Table 1).

3.2. The case k242k1

I now consider the case k242k1. For this case, I take g which
satisfies that

trðgalÞ ¼
1 if lAfk1�1,2k1�1g,

0 if lA ½0,m�1��fk1�1,2k1�1g:

(

By the similar process to the case k2r2k1, I have

M¼
R01 O2k1�ðm�2k1Þ

Oðm�2k1Þ�2k1
R02

" #
and

M�1 ¼
R0�1

1 O2k1�ðm�2k1Þ

Oðm�2k1Þ�2k1
R0�1

2

" #
,

where

R01 ¼ J2k1
þ

Jk1
Ok1�k1

Ok1�k1
Ok1�k1

" #
,

le 1
parison of bit-parallel squaring for irreducible pentanomials.

olynomial Squarer Basis

þxk3 þxk2 þxk1 þ1 [4] PB

rk1 ok2 ok3 r
m

2
Þ

This paper PB

63þx7þx6þx3þ1 [5], this paper PB
63þx8þx6þx4þ1 This paper PB

þxnþ2þxnþ1þxnþ1 [6] Montgom

is odd) This paper SPB
R0�1
1 ¼ J2k1

þ
Ok1�k1

Ok1�k1

Ok1�k1
Jk1

" #
,

R02 ¼ Jm�2k1
þ

Oðm�k3Þ�ðm�k3Þ
Oðm�k3Þ�ðk3�2k1Þ

Oðk3�2k1Þ�ðm�k3Þ
Jk3�2k1

" #

þ
Oðm�k2Þ�ðm�k2Þ

Oðm�k2Þ�ðk2�2k1Þ

Oðk2�2k1Þ�ðm�k2Þ
Jk2�2k1

" #
,

R0�1
2 ¼ Jm�2k1

þ
Jk3�2k1

Oðk3�2k1Þ�ðm�k3Þ

Oðm�k3Þ�ðk3�2k1Þ
Oðm�k3Þ�ðm�k3Þ

" #

þ
Jk2�2k1

Oðk2�2k1Þ�ðm�k2Þ

Oðm�k2Þ�ðk2�2k1Þ
Oðm�k2Þ�ðm�k2Þ

" #
:

I can compute M�1K using (6) and the definition of g as in Section
3.1.1. As a result, I obtain the coefficient ci for 0r iom as follows:

c0þ2i ¼
P

jA Se
1
aiþ j=2 for 0r io

k1

2

� �
,

c1þ2i ¼
P

jA So
1
aiþðjþ1Þ=2 for 0r io

k1

2

� �
,

ck1þ2i ¼
P

jA Se
2
aiþ j=2 for 0r io

k1

2

� �
,

ck1þ1þ2i ¼
P

jA So
2
aiþðjþ1Þ=2 for 0r io

k1

2

� �
,

c2k1þ2i ¼
P

jA Se
3
aiþ j=2 for 0r io

k2�2k1

2

� �
,

c2k1þ1þ2i ¼
P

jA So
3
aiþðjþ1Þ=2 for 0r io

k2�2k1

2

� �
,

ck2þ2i ¼
P

jA Se
4
aiþ j=2 for 0r io

k3�k2

2

� �
,

ck2þ1þ2i ¼
P

jA So
4
aiþðjþ1Þ=2 for 0r io

k3�k2

2

� �
,

ck3þ2i ¼

P
jA Se

5
aiþ j=2 for 0r io

k3

2

� �
P

jA Se
6
aiþ j=2 for

k3

2

� �
r io

m�k3

2

� �
8>>><
>>>:

ck3þ1þ2i ¼

P
jA So

5
aiþðjþ1Þ=2 for 0r io

k3

2

� �
P

jA So
6
aiþðjþ1Þ=2 for

k3

2

� �
r io

m�k3

2

� �
8>>><
>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
where al :¼ 0 for lZm and

S1 :¼ /0,m,2m�k3,2m�k2,2m�k1S,

S2 :¼ /k1,m,mþk1,2m�k3,2m�k2þk1,2m�k3þk1,2m�k2,

2m�k1S,

S3 :¼ /2k1,mþk1,mþ2k1,2m�k3þk1,2m�k3þ2k1,2m�k2þk1,

2m�k2þ2k1S,
] XOR Delay

r4ðm�1Þ –

r
3mþ7k3�k2�3k1þ25

2

3TX

246 3TX

247 2TX

ery squaring
r

m�3

2
þmþ4

2TX

r
m�3

2
þmþ3

2TX
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S4 :¼ /k2,m,mþk2�k1,mþk2,2m�k3,2m�k3þk2�k1,2m�k3þk2,

2m�k2S,

S5 :¼ /k3,m,mþk3�k2,mþk3�k1,mþk3,2m�k3,2mþk3�2k2S,

S6 :¼ /k3,m,mþk3�k2,mþk3�k1,mþk3S:

From above formulae, I induce that the time complexity of
squarer is r3TX and the space complexity of it is rð3mþ5k3�

k2�k1þ28Þ=2 as in Section 3.1.2.
4. Comparison and conclusion

I have proposed a new method to perform bit-parallel PB
squarer for GFð2m

Þ. Using the proposed method, I have given the
explicit formulae of PB squarer for pentanomials, which are the
first reported. Table 1 shows that the proposed PB squarer has
the similar efficiency with [5] which gives PB squarer in hardware
for some polynomials. However, the explicit formulae permit one
to choose pentanomial whose squaring can be performed with
2TX time delay which is the lowest delay reported for squaring
using pentanomials in the literature. For example, I consider the
following two types of pentanomials xmþxk3þxk2þxk1þ1
ð1rk1ok2ok3rm=2,m : oddÞ:

typeðiÞ : k3 : odd,k2 : even,k1 ¼ 1, and k342k2,

typeðiiÞ : k2 or k1 : even and k3 ¼ 2k1:

Such types of pentanomials are very abundant. (For any odd
mA ½19,2000�, there exist such types of pentanomials.) Squarer
using types (i) and (ii) of pentanomials need 2TX time delay and at
most ðmþk3Þþðmþ2k3�2k2�1Þ=2 XOR gates. Moreover, for type
(i) pentanomials, [10] already gives an efficient multiplier which
has the lowest time complexity TAþð3þdlog2ðm�1ÞeÞTX among
known PB multipliers using pentanomials. For type (ii) pentano-
mials, I modify the multiplier proposed in [10]. For elements
A,BAGFð2m

Þ, I explicitly write the product AB by coordinates ei’s
and dj’s defined in [10] and verify that the modified multiplier for
type (ii) pentanomials has m2 AND gates, m2þ2m�k2þ2k1�2
XOR gates, and TAþð3þdlog2ðm�1ÞeÞTX delay. Therefore, opera-
tions over binary fields (for example, scalar multiplication) can
be implemented more efficiently using (modified) multiplier
and squarer for such special types of pentanomials. In Table 2,
I particularly give type (i) or (ii) of pentanomials for five
binary fields recommended by NIST which have low squaring
complexities.

The proposed new method for squarer is also applicable for
any shifted polynomial basis (SPB). The squaring formulae depend
on chosen SPB as well as pentanomial. In particular, I consider SPB
squarer for type (ii) irreducible pentanomial with the SPB
fa�n�1,a�n, . . . ,am�n�2g. It has the similar complexity with the
squarer in [6] (see Table 1). I omit the proof since it is a similar
work with Section 3.

Finally, I expect that the results in this paper would be usable
by hardware implementations and possibly by software.
Table 2

Pentamomial xmþxk3 þxk2 þxk1 þ1 with low

squaring complexities.

½m,k3 ,k2 ,k1� ] XOR Delay

[163, 8, 6, 4] 247 2TX

[233, 9, 4, 1] 355

[283, 45, 14, 1] 437

[409, 18, 16, 9] 630

[571, 35, 6, 1] 861
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Appendix A. Computation of trace values

I compute trace values (a), (b), (c) given in Section 3.1.1. First
of all, I consider ðaÞ : tl for k2�k1r lr3m�k3þk2�3. The values tl

for k2�k1rmr2m�2 are already given in (5), (7), and (8). The
rest values tl for 2m�1r lr3m�k3þk2�3 are computed by the
similar method to (7) or (8). First, in order to compute tl for
2m�1r lo3m�k3�1 (i.e., m�1r l�mo2m�k3�1 and mþki�

1r l�mþkio2m�k3þki�1 for 1r ir3Þ, I consider l such that at
least one of trace values in right side of (6) is 1: l�m¼

mþk2�1,l�mþk1 ¼mþk2�1, l�mþk2 ¼mþk2�1, l�mþk3 ¼

2m�k3þk2�1. For example, t3m�k3þk2�1 ¼ t2m�2k3þk2�1þ

t2m�2k3þk2þk1�1þt2m�2k3þ2k2�1þ t2m�k3þk2�1 ¼ 0þ0þ0þ1¼ 1 or
1þ0þ0þ1¼ 0 according to ma2k3 or m¼ 2k3. Therefore, I have

tl ¼
1 if lAT1,

0 if lA ½2m�k3,3m�k3�2��T1,

(

where T1 :¼ f2m�1,2mþk2�k1�1g [f2mþk2�1if ma 2k3,3m�

2k3þk2�1 if ma2k3g. Next, I consider tl for 3m�k3�1r lr
3m�k3þk2�3. It suffices to compute tl for l satisfying one of the
followings:
�
 l�mþk1Af2m�k3þk2�1 if k1Z2,
2m�1 if k3rk2þk1�2,2mþk2�k1�1 if k3r2k1�2g,

�
 l�mþk2Af2m�k3þk2�1,2m�1 if k3r2k2�2,

2mþk2�k1�1 if k3rk2þk1�2g,

�
 l�mþk3Af2m�1,2mþk2�k1�1 if k1Z2g:
For example, if k3r2k2�2, then t3m�k2�1 ¼ t2m�k2�1þ t2m�k2þk1�1þ

t2m�1þt2mþk3�k2�1 ¼ 0þ0þ1þ0¼ 1 or 0þ1þ1þ1¼1 according
to k3a2k2�k1 or k3 ¼ 2k2�k1. For another example, if k1Z2, then
t3m�k3 þ k2�k1�1 ¼ t2m�k3 þ k2�k1�1þt2m�k3þk2�1þt2m�k3þ2k2�k1�1þ

t2mþk2�k1�1 ¼ 0þ1þ0þ1¼ 0 or 0þ1þ1þ1¼1 according to
2k2ak3þk1 or 2k2 ¼ k3þk1. That is, if k1Z2, and k3 ¼ 2k2�k1,
then t3m�k3þk2�k1�1 ¼ t3m�k2�1 ¼ 1. I note that this case is a special
case of l¼ 3m�k2�1 with k3r2k2�2. As a result, I obtain that

tl ¼
1 if lAT2,

0 if lA ½3m�k3�1,3m�k3þk2�3��T2,

(

where T2 :¼ f3m�k2�1 if k3r2k2�2,3mþk2�2k1�1 if k3r
2k1�2g. Consequently, I have

ðaÞtl ¼
1 if lA I1

0 if lA ½k2�k1,3m�k3þk2�3��I1,

(
ðA:1Þ

where I1 :¼

fk2�1,mþk2�1,2m�k3þk2�1,2m�1,2mþk2�k1�1g

[f2mþk2�1 if ma2k3, 3m�2k3þk2�1 if ma2k3,

3m�k2�1 if k3r2k2�2, 3mþk2�2k1�1 if k3r2k1�2g:

The trace values in (b) are computed from (5) and (A.1) by
considering lA ½0,2mþk2�k1�3� such that at least one of tl and
tlþk1

is 1. That is, I compute tlþtlþk1
for lAfk2�k1�1, k2�1,

mþk2�1,2m�k3þk2�1,2m�1 if k2Zk1þ2g or lþk1Afk2�1,
mþk2�1, 2m�k3þk2�1,2m�1, 2mþk2�k1�1 if k1Z2g. For
example, if k2Zk1þ2, t2m�1þt2mþk1�1 ¼ 1þ0¼ 1 or 1þ1¼0
according to k2a2k1 or k2 ¼ 2k1. From hypothesis k2r2k1,
I have t2m�1þt2mþk1�1 ¼ 1 if k1þ2rk2o2k1. I obtain the
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followings:

ðbÞ tlþtlþk1
¼

1 if lA I2

0 if lA ½0,2mþk2�k1�3��I2,

(
ðA:2Þ

where

I2 :¼ fk2�1,mþk2�k1�1,mþk2�1,2m�k3þk2�k1�1g

[f2m�k1�1 if k3ak2þk1,2mþk2�2k1�1 if k1Z2,

k2a2k1, and k3a2k1,2m�k3þk2�1 if k3a2k1 and

k3ak2þk1,2m�1 if k1þ2rk2o2k1g:

I note that tlþtlþm�k3
¼ 0 for k2r lok3 by (5). Since

tlþtlþm�k3
¼ tl�k3

þtl�k3þk1
þtl�k3þk2

for k3r l (from (6)), the trace
values tlþtlþm�k3

for k3r lr2mþk3�3 are obtained from (5) and
(A.1) by considering lA ½k3,2mþk3�3� such that at least one of
tl�k3

,tl�k3þk1
, and tl�k3þk2

is 1, i.e., l satisfying one of the
followings:
�
 l�k3Afk2�k1�1,k2�1,mþk2�1, 2m�k3þk2�1 if k3Zk2þ2g,

�
 l�k3þk1Afk2�1,mþk2�1,2m�k3þk2�1, 2m�1 if k1Z2,

2mþ k2�k1�1 if k2r2k1�2g,

�
 l�k3þk2Afmþk2�1,2m�k3þk2�1,2m�1, 2mþk2�k1�1 if k1Z2g:

Consequently, I obtain that

ðcÞ tlþtlþm�k3
¼

1 if lA I3

0 if lA ½k2,2mþk3�3��I3,

(
ðA:3Þ

where

I3 :¼ fk3þk2�1,mþk3�1,mþk3þk2�k1�1,

mþk3þk2�1,2m�1g [ f2mþk2�k1�1 if 2k2ak3þk1,

2mþk2�1 if k3Zk2þ2,k3a2k1, and k3a2k2,

2mþk3�k2�1 if 2k2ak3þk1 and k3a2k2,

2mþk3þk2�2k1�1 if k2r2k1�2 and k3a2k1g:
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