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1. Introduction

Arithmetic operations over finite field GF(2™) are essential in a
great variety of cryptosystems and error correcting code applications.
Among them, multiplication and squaring are the most important
ones since other arithmetic operations, such as exponentiation and
inversion, can be performed using multiplication and squaring.

In this paper, I study squarer for GF(2™). Explicit formulae for
squarer have been presented when GF(2™) is defined by irredu-
cible trinomial [1-3]. However, in the case of pentanomial, there
exist squaring formulae for only GF(2™) defined by some special
pentanomials. Ref. [4] only shows that squaring using irreducible
pentanomials requires at most 4(m—1) XOR gates. Ref. [5]
presented the complexity of squaring for some pentanomials.
Ref. [6] gives closed formulae of Montgomery squaring for type Il
pentanomial x™ +x"*+2 4 x"+1 x"+ 1 with an odd m.

In general, the previously proposed squaring needs the reduc-
tion steps. Such reduction steps are too complicated to derive
squaring formula for general pentanomial. I present a new
method to implement a bit-parallel polynomial basis squarer for
GF(2™) generated by an arbitrary irreducible polynomial using
weakly dual basis. Recently, [7] proposed a bit-parallel shifted
polynomial basis multiplier for GF(2™) using weakly dual basis. |
modify the proposed multiplier in [7] to implement squaring
operation. In particular, I derive the explicit formulae for squarer
when GF(2™) is defined by irreducible pentanomial x™+x*s +
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xk2 4 xk1 4 1(1 < ky < ky < k3 <m/2) and show that its complexities
are less than or equal to (3m+7ks;—k,—3k; +25)/2 XOR gates and
3Ty, where Ty is the delay of one XOR gate.

2. Bit-parallel polynomial basis squarer
2.1. Weakly dual basis

In this section, I give some definitions and properties of finite
fields in [7]. For an element f e GF(2™), the trace tr(f) of 8 over
GF(2) is defined by tr(f) = }":’(1) /32], which is a linear function
from GF(2™) to GF(2).

Lemma 1 (Fenn et al. [8, Lemma 1] or Lidl and Niederreiter
[9, Theorem 2.24]). For any linear function ¢ from GFQ2™) to
GF(2), there exists y e GF(2™) corresponding to the linear function
@ which satisfies that ¢(z) = tr(yz) for all ze GFQ2™).

Definition 1. Let {o;} = {o,...,%m_1} and {#;} = {Po,-...Pm_1} e
bases for GF(2™) and y # 0 € GF(2™). Then, the bases {o;} and {f;}
are said to be weakly dual to each other with respect to 7y if
tr(yo;fi;) = 05 for all 0 <ij <m, where J; is the Kronecker delta
function, which is equal to 1 if i=j and 0 otherwise.

Lemma 2 (Fenn et al. [8, Theorem 2]). Every basis has a weakly
dual basis (WDB) with respect to any nonzero y e GF(2™).

Throughout this paper, I assume that GF(2™) is defined by an
irreducible polynomial f{x) with a root o. Let y #0e GF2™) and
{Bi} = Po:B1,---.Pm_1} be the WDB of the polynomial basis (PB)
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{of} = {1,0,...,00" 1} with respect to y (see Lemma 2). It holds
that tr(yociﬁj) =¢;; for 0 <i,j <m. I use the notations b;s and b} s to
denote the coordinates of an element B= >"/""§ bjoil = 31" b*3;
in GF(2™) with respect to the bases {o/} and {f;}, respectively. For
an element B= Y/ b*B;, I have

m—1

m—1
tr(yodB) = tr (vocf > bm) =Y bitr(yod f) = b} 1)
i i=0

i=0
for O0<j<m. Consider the basis transformation matrix
(drj)o<kj<m from the PB {oi) to the WDB {f;} such that ;=
Lo, ...,0m idojudy j, - - .17 = Y= dijoX, where dyj € GF(2)
for 0 < k,j <m. I have
. -1 .
Sy =ty =S dijtr(pol k)
= [tr(pod), tr(yod T 1, L tr(pod T x [do o da g, - o7
for 0 <1i,j <m. These equations imply that
BosPrs - Bl =010 ...,0" M,

where M is the m x m matrix whose entry M;; in the i-th row and

j-th column is defined by
Mij=t; forO<i,j<m 2)

and t =tr(ya!) for leZ. Moreover, for an element B=
Moo biod = S0 bEB; in GFQ™):

[bo.b1, ... .bym_1]F =M~1[b%,b%, ... ,b% 1. 3)

2.2. New squarer method

Let A= """} a;of be an element in GF(2™). For the squaring
C =Yg ciod = M) c*Bi(=A?) of A, I have

m—1 m—1

¢f =tr(podO) = tr(yolA?) = Y tr(pa " H)aj = > i,
j=o0 j=o0

for 0 <i<m from (1). Therefore

S am-1 ]T,

where K is the m x m matrix defined by

[cé,ck,....ci 1" =Klap, ..

K,‘J‘ =t o forO<i, j<m.
From (3), I conclude that
cCmlT = MYk, Samall. @)

Thus, in order to compute C, it suffices to compute the matrix
M~1K whose entries are either 0 or 1.

[co.Cq, - L T =M"K[a, ..

3. Squarer for irreducible pentanomial

In this section, I apply the proposed method to irreducible
pentanomial f(x)=x"+xk +xk2 x4 +1 with 1<k; <k, <ks <
m/2 and derive the explicit formulae of PB squarer. I divide into
two cases according to the cases k, < 2k; or 2k; < k, and take the
different values for y according to each cases to easily compute
the inverse matrix M~! of M.

3.1. The case ky < 2k;

Assume k; < 2k;. I choose y e GF(2™) which corresponds to the
following linear function:
1 if l€{k2—k1—1,k2—1},
Y N
= o) = {o if [e [0,m—1]—(ko—ki—1,ky—1). (%)

(Of course, it may be possible to choose different value for 7.
From experience, I just choose such value y that the inverse
matrix M~ is of simple form.) Let {§3;} be the WDB of the PB {o'}
with respect to 7.

3.1.1. Squaring formulae

First, | compute trace value ¢; for 0 <l<2m-2 to find the
inverse matrix M~'. Since ol4oalmths pol-mike o gl-mik
ol=m =0 for I > m, | have

b=t m+tmik, Flomik, Flomik, forl=m. 6)

Using (5) and (6), I can compute t; for m<l<2m—ks; (i.e., 0<
I-m <m—kz and k; < -m+k; < m—ks +k; for 1 <i < 3). Such trace
values t; can be computed by considering all values [ such that at
least one of trace values in right side of (6) is 1: ti_,=1<
I-me{ky—ki—1, kx—1} and ti_pmk, =1« I-m+ki=ky—1. 1
compute t for le{m+ky—ki—1,m+k,—1}. For example,
Uit ky—ky—1 = biy—ky—1 Flig—1 +Laky—ty =1 + kg 4 ky—ky—1 = 1+ 1+0+
0= 0. So I get that

1
= 0

Next, using (5)-(7), I compute t; for 2m—k; <l<2m-2 (ie,
m—k3 <l-m<m-2 and m—ks+k; <l-m+k;<m+k;—2 for
1 <i<3). I consider [ such that at least one of trace values in
right side of (6) is 1: tj_pm ik, =1<l— m+ks=m+k,— 1<l=
2m—k3+k2_]- I have t2m—k3 +ky—1= tm—k3 +ky—1 +tm—k3 +ky k-1
bk + 2ky—1+Em 4 k,—1 = 04+0+0+1=1. Therefore, I get that

if l=m+ky—1,

if Ie [m.2m—ks—1]—{m-+ky—11. @

1 if I=2m—k3+ky—1, 3
=30 if le[2m—k;,2m—2]—{2m—k; +k,—1}. ®
By (5), (7), and (8), the matrix M defined in (2) is given by

Rl Okz x(m—ky)
M= , 9
|:O(mkz)><l<z RZ ( )

where O;,; is the i xj zero matrix, J; is the I x | exchange matrix
defined by (J;);;_;_;=1 for 0 <i<I and 0 otherwise,

]kz—k1 O(k2*7<1)><k1
Ry =], + and
1=Jk, Ok xtky—kyy — Okyxky
R, =] 4 O(m—k3)><(m7k3) O(m*kz)X(kz*kz)
27Im—te T O, —kyyxm—ks) Jis—ks ’

Since ky—ky <k;/2 and ks—k, < (m—ky)/2, I can verify

Ok, xk Ok, x(ky—ky)
Ry =J, + B T and
Ok, —ky)xky Jiy—t,
R = Jor + Jks—k, Os —ky)x(m—k3) _
2| Om-ks)xtks—ks)  Otm—ks)x(m—ks)

So I obtain that

K
R:1 Ok, x(m— K
M = ! x| and MoKk=1 7|, (10)
O(m—kz)xkz Rz K3
Ky
where

o K is the k; x m matrix with

(K )i'j = th—H—kz—] for0<i< k] ,
e 2 is the (k;—kq) x m matrix with

(K2)ij=tajitky—ky—1 +ojmiyiy—1  fOr 0 <i<ka—kq,
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e K5 is the (k3—ky) x m matrix with

(K3)ij=tyjitky—1 +ojiym-1 for 0<i<ks—ky,

e K, is the (m—ks3) x m matrix with

(Ka)ij=tojitm—t;+k—1 fOr 0<i<m—ks

for 0 <j <m. In order to find the matrix M~'K in (10), I have to
compute the following trace values:

(a) t; for ky—kq <l<3m—k3+ky—
(b) i+t for 0<l<2m-+ky—ki-3,
() t+ti my, for ky <I<2m+ks—

Such computations are implemented similar to (7) or (8). I leave

the computation of trace values (a), (b), (c) for Appendix A.
Using (A.1)-(A.3) in Appendix A, I can locate the positions of

one of the matrices K; for 1 <i <4, and so compute [cy, ...,Cm_1]T =

M~'K[ay, .. .,am_1]". For the matrix
by 1 fiy+1 bmi k-3
ti,—2 Ly, Omyky—a
tk2—3 tk2_1 t2m+kz—5

Ky = ,
tiyb-a b2 0 bmik,-6
tky—ky  Ciy—ky+2 bomky—ky—2

I have =1 for le{ky—1,m+ky—1,2m—ks+k,—1,2m—-1}U
(2m+ky—k,—1ifk; > 2} by (A.1). Let S be the set that consists of
the difference I-(k,—1) of indices between t;, (= (Kq)go) and
t; such that (Ki),,=t;=1. Then $;={0,m,2m—ks, 2m—k;}u
{2m—kyifky > 2}. I use the notation S¢ := {j € S|jis even} and S° =
{j € S|jis odd} for any set S. Since (K1)oj = tik,—1)+2j and (Ky)qj=
tk,—1)+2j—1 for 0 <j <m, T have co = Zjesea, and ¢y = ZjeSoa(I+l)/2
Moreover, since the entries of the first column of K, except for
(K1)oo are zero and (Ki)s,=(Ki)s p.41 for 0<s<k;—3 and
0<t<m-2,1have

for0<i< {ﬁw

Cot2i= 2 Qitjp2 5
jess

Ky
Clyai= > Giygrnp for0<i< bJ
jes§

For the matrix Ky, I have tj+t;,4, =1 for lel, in (A2). Let S ==
{l—(k,—k;—1):le L} be the set that consists of the difference
between k,—k;—1 and lel, (note that (Kz)go=tk,—k,—1+tk,—1
and (KZ)s,t = tl+tl+k1 =1 for 1612). Then S, = {k;,m,m+kq,
2m—ks3} U (2m—kyifks # ko +kq,2m—kqifk; > 2,k # 2ky,andks #
2kq,2m—ks +kqifks # 2kiand k3 # ky +ky,2m—ky +  kyifk;+2 <
ky < 2kq}. Similar to the matrix Ky, I have

k2 —k]-‘

Cky +2i forO<i< ’V 5

= > Giyjp
jes
a1

. kz—k]
Chi+142i= 2 Gipgenp for0<i< {TJ
jess

The conditional sentences in S; (resp. S;) may be omitted if I
eliminate the elements in S; (resp. S;) such that are greater than
2m-2 or appear twice. For example, if k3 =k;+k;, then two
elements 2m—k, and 2m—ks+k; in S are equal. In that case, I
eliminate such two elements in S,. (In fact, two terms in the
summation (11) induced by same elements in S, are eliminated.)
Then, I may simply rewrite

S1=<0,m,2m—ks3,2m—ky,2m—ky ),

Sy = (ky,mm+ky,2m—ks,2m—ky,2m—ky,2m—ks +ky,2m—ky +k; >,

where the set < > means the set that the elements in < > which
appear twice or are greater than 2m-2 are eliminated. (See
Example.) Similar to above, I can write the formulae for the
coefficients c; for k; <i<m as follows:

Ciy+2i = ngseat-u/z for0<i< 3

Clo+1+42i =2 jesoivgrnz for0<i< 3

C’<3+2i:ZjeS§ai+j/2 f0r051< 5

(12)

Clo+1+2i =2 jesbi++n2 for0<i< 5

where q; .= 0 for [ >m and

S3 = {ky,m,m+ky—ky,m+ky,2m—ks,2m—ks +ky,—kq,
2m—ks+ky,2m—ky,2m+-ky, -2k >,

S4 = {k3,m,m+ks—ky,m+ks—ky,m+ks,2m—ks,

2m+k3—2k2,2m+k3—2k1 >.

Set S5 = (k3,m,m+ks—ky,m+kz—ki,m+ks;>(<Sy).
for [>m, (12) can be rewritten as follows:

Since a;=0

. [k3]
Djes:Givif2 forOsz<{73
Ciksy+2i = K .
3 . [m—ks
Yjeselivjp for [7w <i¢ Tw
k
Yjeselivi+1)/2 f0r0<l<{23
Cky+1+2i = k
3 . mfkg
ZjESgaH-(H—])/z for {7_ gl<{ 5 J

3.1.2. Upper bound of complexity
I consider an upper complexity bound of the proposed squarer.
It is easily verified that 1<|S{|<8 and 1<|S]| <8 for any
m,ks,ky,k1, and 1 <i<5. So the time complexity of squarer is
(max; < <s{[log,(|S7 )1, rog,(|S{)1})Tx < 3Tx by binary XOR tree.
And the space complexity is <
w (83 ‘71)“2 li

(|sf|71)[’ﬂ+(\s H)V‘lJH\s \71)[
+(‘Sg|71)_k3;k2—‘ (‘S ‘71)\](3 kZJ +(‘SZ‘71)’VE—‘
+(\SZ|—1) k3J+(‘S ‘_])[m 2k3" +(\S ‘_1)[m Zkﬂ

<(si-2[ 5| #5225 [+ (sal-2) 5]

(k3 m—2k
+(|S4]-2) ]+(\ss\_2)[ ﬂ
- 3m+7ks—ky—3k; +25
< 5 .

3.1.3. Example
I illustrate the formulae of the squarer for GF(2'®%) defined
by f(x)=x1634+x8+x64+x*+1 with k; =4k, =6, k3 =8, and
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2m—2 =324. 1 have

R = +
S, =<0,163,318,320,322>» ={0,163,318,320,322}, 1 =

Ok, xky Ok xky
Otixty  Joy |

S, = (4,163,167,318,320,322,322,324> Omtoreim iy Otmtoretts 2k

={4,163,167,318,320,324}, Ry =Jm 2k, + [O(k 2ky)x(m—ks) Jis—2k }
3 1)% —K3 3 1

S3 = (6,163,165,169,318,320,324,320,324 > Otmtoyetmtsy  Otmtoreko_2tr)
—(6,163,165,169,318}, Oty 24yt Jo21,

Ss = <8,163,165,167,171,318,322,326 >
—(8,163,165,167,171,318,322}, R =] N Jis -2k, Oks 2k yx(m—ks)

2 T2 T Ot eyt -2k Olmks)m—ks)

Then the coefficients ¢; of the squaring C= 1% ciai (=A% =

Ss — (8,163,165,167,171)
(32/%%, a;o)?) can be written as follows: {

Jiy—2k, Ok, —2k1 ) x(m—ky)
Otm-—i)x(-2k1)  Otm—kp)x(m—ky) |’

I can compute M~1K using (6) and the definition of y as in Section

® Coi2i=0i+0i 150+ Air160+0ip161 for 0<i<2, 3.1.1. As a result, I obtain the coefficient c; for 0 <i < m as follows:
oc1+2,~:a,~+82f0r03i<2, ki
. 1
® C4=0az+0a159+A160 + 162, Co+2i ZZjeSgaiﬂ'/z forO<i< 5
® (5 =dgy+0ga, K
_ . 1
® Cg =a3+djsg, C142i :Zjesga,-w-ﬂ)/z forO<i< 5]
® (7 =dg+0ag3+dss, :I -
. . <1
Qiya+0ai159+0i161 for 0<i<4, Ciy +2i =2 jesebivjs2 forO<i<|>|
® Cgi2i=1 ¢ f ;
iv4 or4<i<78, k
. C i =D ieslip forO<i<|~|,
® Cg =0 g +0i g3+ Ui 84+ g5 fOr 0<i<77. ke ZJGSZ T/ L2 ]
. _k2—2k1
I note that cg ., can be rewritten by Cg,oi=0;,4-+0a;, 159 for 2k, +2i =2jes; it for0<i< 2 —‘
2 <i<4 since ;=0 for I>m. The terms a; 159+ 161 IN Co 2i | ka—2k;
may be reused in cg, ,; for0 <i< 2. Also, cg is computed reusing Coky+1+42i =D jesylit(+1)2 for0<i< 3 J
the term ag, +ags in c;. Therefore, the space complexity of the :k3—k2
squarer is (64+3+1+1+2+8+77-3)-5=247 and the time Cky +2i zzj‘eszai+j/2 for0<i< 2 w
delay is 2Tx by binary XOR tree (see Table 1). ke —k
: 3—K2
Cky +142i =Zjesga,»+0+1)/2 forO<i< 3 J,
3.2. The case ky > 2k, \ -
. k
) ) ) Desslivjp forO0<i< [jﬂ
I now consider the case k, > 2k,. For this case, | take y which ) _
satisfies that Chs +2i B ksl _._ [m=ks
Yjeslivjp for S| =i<|—5
1 if lE{k]—],zk]—]},
tr(yal) = . ks
0 if le[0,m—1]—{k;—1,2k;—1}. Yjeselivgrn for0<i< 5
fs Cks+1+2i =
By the similar process to the case k, < 2kq, I have 31+ k3 . |m—ks
: Zjesga,'+(,'+1)/2 for 5 <1< 5
R Oak, x(m-2k;)
M= 0 R and
(m=2k1)=2k: 2 where a; = 0 for [ >m and
M,] |: R/l_l OZI<1><(m2k1):| S1 = <0,m,2m—k3,2m—k2,2m—k1 >,
= 1 ,
Oun-—2k1)x2k, Ry Sy = (ky,m,m+ky,2m—ks,2m—Kky +kqi,2m—ks +ky,2m—k;,
where 2m—ky 3,
Ry =y | S Ot S3 == (2ky,m+ky,m+2ky,2m—ks +ky,2m—ks + 2ky, 2m—ky + ki,
1 Oy sk, Ok iy 2m—ky+2k; >,
Table 1
Comparison of bit-parallel squaring for irreducible pentanomials.
Polynomial Squarer Basis # XOR Delay
XM x5 +xle pxkt 41 [4] PB <4(m-1) -
(1 <ky <ky <ks Sg) This paper PB S3n1+7k371;273k] +25 3Ty
X163 £ x7 4 x6 4 x3 11 [5], this paper PB 246 3Tx
X163 4 x8 4 X6 4 x4 +1 This paper PB 247 2Tx
XM xn+2 i+l xn g q [6] Montgomery squaring < m;3 tmta 2Tx
(m is odd) This paper SPB < 11173_*_”1_‘_3 2Ty
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S4 = <kz,m.m+k2—k1.m+k2,2m—k3,2m—k3 +k2—k1,2m—k3 +k2,
2m—k; >,

S5 = (k3,m,m+kz—ky m+ks—ky,m-+ks,2m—ks,2m+ks3—2k, >,

S = {ks,m,m+kz—ky m+ks—k{,m+ks>.

From above formulae, I induce that the time complexity of
squarer is < 3Tx and the space complexity of it is < (3m+5k;—
ko—kq+28)/2 as in Section 3.1.2.

4. Comparison and conclusion

I have proposed a new method to perform bit-parallel PB
squarer for GF(2™). Using the proposed method, I have given the
explicit formulae of PB squarer for pentanomials, which are the
first reported. Table 1 shows that the proposed PB squarer has
the similar efficiency with [5] which gives PB squarer in hardware
for some polynomials. However, the explicit formulae permit one
to choose pentanomial whose squaring can be performed with
2Ty time delay which is the lowest delay reported for squaring
using pentanomials in the literature. For example, I consider the
following two types of pentanomials x™+xk: 4xk2 4 xk 41
(1<ky <ky;<ks<m/2,m:odd):

type(i) : k3 : odd,k; : even,k; =1, and k3 > 2k,
type(ii) : k; or k; : even and ks = 2k.

Such types of pentanomials are very abundant. (For any odd
m e[19,2000], there exist such types of pentanomials.) Squarer
using types (i) and (ii) of pentanomials need 2Ty time delay and at
most (m+ks)+(m+2ks—2k,—1)/2 XOR gates. Moreover, for type
(i) pentanomials, [10] already gives an efficient multiplier which
has the lowest time complexity T4+ (3+ [log,(m—1)])Tx among
known PB multipliers using pentanomials. For type (ii) pentano-
mials, I modify the multiplier proposed in [10]. For elements
A,Be GF2™), I explicitly write the product AB by coordinates e;’s
and d;’s defined in [10] and verify that the modified multiplier for
type (ii) pentanomials has m? AND gates, m?+2m—k,+2k;—2
XOR gates, and T4 +(3+[log,(m—1)1)Tx delay. Therefore, opera-
tions over binary fields (for example, scalar multiplication) can
be implemented more efficiently using (modified) multiplier
and squarer for such special types of pentanomials. In Table 2,
[ particularly give type (i) or (ii) of pentanomials for five
binary fields recommended by NIST which have low squaring
complexities.

The proposed new method for squarer is also applicable for
any shifted polynomial basis (SPB). The squaring formulae depend
on chosen SPB as well as pentanomial. In particular, I consider SPB
squarer for type (ii) irreducible pentanomial with the SPB
{1 o, ..., 0™ "=2} It has the similar complexity with the
squarer in [6] (see Table 1). I omit the proof since it is a similar
work with Section 3.

Finally, I expect that the results in this paper would be usable
by hardware implementations and possibly by software.

Table 2
Pentamomial x™ +xk +xk x4 41 with  low
squaring complexities.

[m,k3,ko,kq] # XOR Delay
[163, 8, 6, 4] 247 2Tx
[233,9,4,1] 355

(283, 45, 14, 1] 437

[409, 18, 16, 9] 630

[571, 35, 6, 1] 861
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Appendix A. Computation of trace values

I compute trace values (a), (b), (¢) given in Section 3.1.1. First
of all, I consider (a) : t; for k,—k; <1< 3m—ks+k,—3. The values t;
for k;—k; <m <2m-2 are already given in (5), (7), and (8). The
rest values t; for 2m—1 <1< 3m—ks;+k,—3 are computed by the
similar method to (7) or (8). First, in order to compute t; for
2m-1<l<3m—ks;—1 (i.e, m—-1<l-m<2m—k;—1 and m+k;—
1< I-m+kj <2m—ks+k;—1 for 1 <i < 3), I consider [ such that at
least one of trace values in right side of (6) is 1: I-m=
m+ky—1,1-m+ky=m+ky—1, I-m+ky,=m+ky,—1, I-m+ks=
2m—k3+k,—1. For example, f3;_t,1ky—1 = am—2ks +ky—1+
bam—2ks +1s + ki —1 T E2m—2ks 4261+ Lom—ky+k,—1 =0+0+0+1=1 or
1+0+0+1 =0 according to m # 2ks or m = 2ks. Therefore, I have

1 ifl€T1,
t = 0

if le[2m—ks3,3m—k;—2]-Ty,
where T; = {2m—1,2m+ky—ki—1} U2m+k,—1if m# 2ks;,3m—
2k3+ko—1 if m#2ks}. Next, I consider t; for 3m—k;—-1< I<
3m—ks; +k,—3. It suffices to compute ¢; for I satisfying one of the
followings:

o [-m+kie{2m—ks+k,—1 if ky >2,
2m—1 if k3 <k, +ki—2,2m+ky—ki—1 if k3 <2k;-2},
o [—m+ky e 2m—ks+k,—1,2m—-1 if k3 <2k,-2,
2m-+ky—ki—1 if k3 <k, +k1—2},
o [-m+kse{2m—-1,2m+ky,—k;—1 if k; > 2}.

For example, if k3 < 2k, —2, then t3p_k,—1 = tom—k,—1+ bam—k, +k—1+
tom—1+tmiks—k,-1 =0+0+1+0=1 or 0+1+1+1=1 according
to k3 # 2k, —kq or k3 = 2k, —k;. For another example, if k; > 2, then
B3m—ks + ky — ks =1 = Lam—ks + ky —ky =1 T E2m—ks +-kp—1 +Eom—k5 + 2k —ky -1 +
bmiky—ky—1= 0+140+1=0 or 0+1+1+1=1 according to
2ky # k3 +ky or 2k, = ks +ky. That is, if k; > 2, and ks =2k, —kq,
then t3p_k, 4+ k,—k,—1 = t3m—k,—1 = 1. I note that this case is a special
case of [ =3m—k,—1 with k3 <2k,—2. As a result, I obtain that

1 ifle Tz,
U=90 if leBm—ks—1,3m—ks+k—3]-To,
where T, = (3m—ky—1 if k3 <2k,—2,3m+k,—2k,—1 if k3 <
2k, —2}. Consequently, I have

1 iflel
(a)tl = 0

if 1 [ka—ky,3m—Kks +ka—3]1I1, A1)
where I1 =

(ky—1,m+ky—1,2m—ks+k,—1,2m—-1,2m+k,—k;—1}
u2m+ky—1 if m# 2ks, 3m—2ks +k,—1 if m # 2ks,

3m—ky—1 if k3 <2k,—2, 3m+ky—2k;—1 if k3 <2k, -2}.

The trace values in (b) are computed from (5) and (A.1) by
considering [ e[0,2m+k,—k;—3] such that at least one of t; and
tiyk, is 1. That is, I compute t;+t;,y, for le{k,—k;—1, k-1,
m4ky—1,2m—kz+k,—1,2m—1if k, > ki +2} or I+k;e{ky—1,
m+ky—1, 2m—ks3+k,—1,2m-1, 2m+k,—k;—1if ky >2}. For
example, if ky>ki+2, m_1+bmik-1=14+0=1 or 1+1=0
according to kj #2ky or k, =2k;. From hypothesis k, <2k,
I have tm_1+bmik-1=1 if ki+2<ky<2k;. I obtain the
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followings:

b 1 iflel, A2
O O+l =0 0 if [ 10.2m+ky—ky—3]—, (A2)
where

L = {ky—1,m+ky—ki—1,m+k,—1,2m—ks +k2—k1—1}
u{2m—kqy—1 if k3 # ko +kq,2m+ky—2k,;—1 if ky > 2,
ko # 2kq, and k3 # 2kq,2m—ks +k,—1 if k3 # 2k; and

k3 #ky+ki,2m—1if ki +2<k; <2k1}.

I note that tj+t,mk =0 for ky<l<ks by (5). Since
b+t meky = bi—ky + ks 1+ ky T+ Li—ks + k, fOT k3 <1 (from (6)), the trace
values t;+t; m_, for ks <I<2m+k;—3 are obtained from (5) and
(A.1) by considering [ e [k3,2m+k;—3] such that at least one of
bt biky + K, And t_g, 4, is 1, ie, [ satisfying one of the
followings:

L] l—k3 € {kz—k1—1,k2—l,m+l<2—1, 2m—k3+k2—1 if k3 2k2+2},
® |—ky+kye{ky—1,m+ky—1,2m—ks+k,—1, 2m—1 if k; > 2,
2m+ ky—ki—1 if ky <2k;-2},

® [—k3+kye{m+k,—1,2m—ks+ky—1,2m—1, 2m-+ky—k;—1 if k; > 2}.

Consequently, I obtain that

1 iflel N
© OFlimts =30 if le[ky,2m+ks—3]—Is, (A3)

where

I3 = {ks+ky—1,m+ks—1,m+ks+ky—ki—1,
m+ks+k,—1,2m—-1y U 2m+ky—ky—1 if 2k, # ks +kq,
2m4-ky—1 if k3 > ky +2,ks # 2kq, and k3 # 2k,
2m+ks—ky—1 if 2ky # k3 +kq and k3 # 2k,

2m-+ks +ky—2k1—1 if kp, <2k;—2 and ks # 2kq}.
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