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A B S T R A C T

Ligand and structure-based pharmacophore models were used to identify the important chemical
features of butyrylcholinesterase (BChE) inhibitors. A training set of 16 known structurally diverse
compounds with a wide range of inhibitory activity against BChE was used to develop a quantitative
ligand-based pharmacophore (Hypo1) model to identify novel BChE inhibitors in virtual screening
databases. A structure-based pharmacophore hypothesis (Phar1) was also developed with the ligand-
binding site of BChE in consideration. Further, the models were validated using test set, Fisher’s
Randomization and Leave-one-out validation methods. Well-validated pharmacophore hypotheses were
further used as 3D queries in virtual screening and 430 compounds were finally selected for molecular
docking analysis. Subsequently, ADMET, DFT and chemical similarity search were employed to narrow
down on seven compounds as potential drug candidates. Analogues of the best hit were further
developed through a bioisosterism-guided approach to further generate a library of potential BChE
inhibitors.
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia, amounting to 50–70% of all such reported cases. AD
leads to gradual and severe deterioration of the central nervous
system, especially with the onset of middle age, and with the
increase in longevity of the average human lifespan, there is
increasing incidence of AD in the present times. Dementia has been
reported to affect about 47 million people worldwide in 2015, and
this figure is set to reach 75 million by 2030. If unchecked, this
figure would further escalate to 131 million by 2050, with the
maximum of incidence of cases in low-income and middle-income
countries [1]. The first mutation detected in familial studies of AD
was identified in the ß-amyloid precursor protein (APP) gene on
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chromosome 21. Missense mutations in the APP gene have been
attributed to the development of Early-onset Alzhemer’s Disease
(EOAD) via an amyloidogenic mechanism. Similar mutations in
two other genes, viz., about 80 in presenilin 1 (PS1) and six in
presenilin 2 (PS2) till date have also been implicated in a sizeable
proportion of familial EOAD cases [2]. Late-onset Alzheimer’s
disease (LOAD) too has a strong genetic basis and 22 genetic loci
have been identified till date that may indicate genetic predispo-
sition for LOAD. APOE is the primary gene implicated for LOAD.
Genome-wide association studies (GWAS) have further discerned
21 additional susceptibility loci including BIN1, MEF2C, INPP5D,
CD2AP, TREM2, HLA-DRB1/HLA-DRB5, EPHA1, ZCWPW1, NME8,
CLU, PTK2B, MS4A6A, CELF1, PICALM, SORL1, SLC2A4, FERMT2,
DSG2, CD33, ABCA7 and CASS4 [3].

AD leads to a loss in cholinergic neurons and is associated with
the loss in intellectuality of the brain associated with aging [4].
Common progressive dementia, extracellular build-up of b-amy-
loid proteins to form senile plaque, neuro-fibrillary tangles at
proximal dendrites, neuronal dysfunction and death, and synaptic
loss are the major neuropathological hallmarks of the disease [5,6].
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Though the cholinergic system is the most affected neurotrans-
mitter system, substantial losses are also sustained in the
forebrain, cortex, and hippocampus- all of which play a vital role
in the acquisition, processing, and storage of memories of the brain
[7]. Cholinergic neurons of the basal forebrain are crucial in
modulating other neurotransmitters through extensive cortical
projections in the AD brain [1].

AD development is particularly synonymous with a forebrain
cholinergic neuron loss and a subsequent progressive decline in
Acetylcholine (ACh) levels [2,3]. This has been surmised to be due
to increased levels of Acetylcholinesterase (AChE) around the
amyloid plaques. A proper elucidation of the relationship between
AChE and pathogenesis of AD would only be made possible
through extensive research on the various aspects of this topic-
though recent studies have reported that both b-amyloid protein
and abnormally hyperphosphorylated tau can influence expression
of AChE. AChE mediates the cholinergic synapses of the brain and
autonomic nervous system by catalyzing the hydrolysis of ACh.
AChE selective inhibitors have also been used as AD therapy to
amplify the action of ACh at remaining cholinergic synapses in the
AD brain. Cholinomimetic drugs are generally prescribed for
treatment of AD and centrally acting cholinesterase inhibitors like
Tacrin and Donepezil are prescribed as the most effective AD
treatment therapy for mild to moderate AD [8]. Only symptomatic
treatments are used as therapy for AD- most of them serve to
counterbalance the neurotransmitter disturbance, and these come
with their fair share of side effects ranging from nausea to possible
liver damage [Alzheimers and current therapeutics]. Memantine,
an N-methyl-D-aspartate receptor noncompetitive antagonist- is
now recommended for treatment of moderate to severe AD but
effective treatments by ‘disease-modifying’ drugs are still to make
it to routine therapy for AD [9].

The medicines that are prescribed presently for AD are centrally
acting cholinesterases which target both Acetylcholinesterase and
Butyrylcholinesterase (BChE). AChE is generally localised in the
neurons, whereas BChE is primarily associated with glial cells,
endothelial cells, neurons as well as hepatocytes [7]. Various
reports concur on the genesis of amyloid protein plaques
Fig. 1. 2D representation of th
associated with AD to modification of both AChE and BChE, since
cholinesterase inhibitors succeed in diminishing these plaques
[27]. BChE activity is however seen to rise progressively in patients
with AD whereas that of AChE remains unchanged. The role of
BChE in the hydrolysis of ACh towards ameliorating the cholinergic
deficiency of the brain, particularly when associated with glia,
further strengthen its choice as drug candidate. It has also been
reported that at high-level brain activity, local synaptic ACh can
reach upto micromolar range in concentration which approach
inhibitory levels for AChE activity. Regulation of local ACh levels for
maintenance of normal cholinergic function can be credited to the
synergistic BChE-mediated hydrolysis brought about by the close
spatial relationship of glial BChE. Also, studies on the survival of
AChE knockout mice [9] have substantiated the crucial and
substitute role of BChE in hydrolysis of ACh [10]. Site-directed
mutagenesis and photo-affinity labelling studies of Human BChE
establish the independent location and significant difference in
ligand-mediated response from that of AChE though they have
been assigned similar peripheral sites of binding [2,3]. Thus, BChE
is well-supported by independent studies to be forwarded as a
biological target for drug discovery studies and has thus been
explored in the present study.

Traditional drug discovery and development techniques are
time-consuming and resource-demanding processes. Computer-
aided drug discovery techniques are hence favoured alternatives to
first streamline the processes of drug discovery, design, develop-
ment and optimization so that only the best hits can be forwarded
for further wet lab validation. In the present study, computational
techniques such as pharmacophore modeling, molecular docking
and Density Functional Theory (DFT) analysis have been performed
for identification of potent and selective BChE inhibitors.

2. Materials and methods

2.1. Generation of ligand-based pharmacophore model

HypoGen module of BIOVIA Discovery Studio v4.5 (DS v4.5) was
used to generate a 3D ligand-based pharmacophore model from a
e training set compounds.
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set of known human BChE (BChE; EC 3.1.1.8) inhibitors which were
based on a similar type of assay. Ten quantitative pharmacophore
hypotheses were generated and the top hypothesis was used as 3D
query for virtual screening. Here, we have used 16 structurally
diverse chemical entities with activity ranging from 0.035 nmol/L
to 980 nmol/L (IC50), ensuring that the activity values are in four
orders of magnitude against the human BChE protein. All the
compounds and their activity values were retrieved from previous
literature and the ChEMBL database [4–9]. Two-dimensional (2D)
structures of training set compounds were sketched using
MarvinSketch v6.2.0 (ACD Inc., Toronto, Canada) as depicted in
Fig. 1 and then converted to 3D form after subjecting them for
necessary energy minimization using Diverse conformation (DS)
software. Dataset compounds were further checked for addition of
hydrogen atoms and then minimized using the CHARMM-based
smart minimizer that performs 1000 steps of steepest descent
followed by conjugate gradient algorithms with a convergence
gradient of 0.001 kcal mol�1 [10]. DS option was applied and 250
conformations were generated using BEST conformer generation
protocol of DS which employed the Poling Algorithm at an energy
threshold of 15 kcal mol�1. The principle of rigorous energy
minimization that is employed in both torsional and cartesian
space ensures the best coverage of conformational space by
application of the poling algorithm [11,12]. All the 16 compounds
were than submitted to the HypoGen module of DS v4.5. The
minimum and maximum counts for all the features in the
hypothesis run were set to 1 and 5 respectively. Uncertainty value
was set to 2 and the minimum inter-feature distance was set at 2.5.
All other parameters in the HypoGen module were kept in default
settings [12]. The features that have been considered to develop
the pharmacophore model are Hydrogen bond acceptor (HBA),
Hydrogen bond donor (HBD), Hydrophobic Aromatic (Hy-Ar),
Hydrophobic Aliphatic (Hy-Ali) and Ring Aromatic (AR). Prior to
the final hypothesis generation, common features-based pharma-
cophore (Feature Mapping) generation module of DS was used to
identify common pharmacophore features among the training set
compounds. Best hypothesis (Hypo1) model was analyzed and
evaluated based on the cost function and by using determinant
factors such as RMSD and correlation between actual versus
predicted values of the internal training set compounds.

2.2. Structure-based pharmacophore modeling

Structure-based pharmacophore modeling is a well-estab-
lished pharmacophore modeling approach which is based on the
potential binding sites of known therapeutics to their receptor
active sites [13]. Here, we have used the active site of butanoic
acid-bound crystal structure of human BChE as a starting point to
develop the model. The protein crystal structure was retrieved
from Protein Data Bank (PDB code-1P0I) [14]. Prior to hypothesis
development, the structure was cleaned and optimized at DS v4.5
workspace. A sphere within a distance of 9 Å from butanoic acid at
the binding cavity was selected using the Edit Binding site
prediction tool of DS. Interaction generation protocol of DS was
employed to generate the important interaction points corre-
sponding to the catalytically important amino acid residues within
the BChE active site [15]. Finally, interaction points were clustered
using the Edit and Cluster pharmacophore features of DS.
Redundant pharmacophoric features were discarded and catalyti-
cally important features around the binding cavity were consid-
ered for the final model development. Exclusion volumes were
then added to the pharmacophore model and the best pharma-
cophore (Phar1) was built. Phar1 was further validated using a test
set and was used as 3D query in the virtual chemical screening.
2.3. Validation and evaluation of Hypo1 and Phar1

Hypo1 was evaluated based on the cost components which
were generated during model development. Statistically important
parameters such as RMSD and correlation coefficient were
calculated by HypoRefine module. The best ligand-based pharma-
cophore model would have high correlation coefficient, low RMSD
values and cost components such as total cost would be closer to
the fixed cost than to the null cost [10,12]. Hypo1 was validated
using the group of test set compounds (Fig. S1 and Table S1 as
Supplementary data), Fisher’s Randomization and Leave-one-out
methods set was prepared based on the 40 structurally diverse
known BChE inhibitors with the same activity range as the training
set compounds. Fisher’s Randomization method was additionally
employed on the training set compounds to validate statistical
robustness of Hypo1. Nineteen random sheets were generated
along with the original hypothesis generation, where the signifi-
cance level was set at 95% confidence by shuffling the activity
values of the training set compounds. Further, the leave-one-out
method was employed to establish the efficiency of Hypo1.
HypoGen module was employed to develop 16 Pharmacophore
models by leaving one compound at a time. Correlation coefficient
(r) values of all the models were further compared with the original
pharmacophore hypothesis (Hypo1) to establish the reliability of
Hypo1. The structure-based pharmacophore model- Phar1 was
also evaluated and validated by a separate set of test compounds
with known BChE inhibitory activity presented along-with as
Supplementary data (IC50 in nmol/L).

2.4. Virtual screening of databases

Well-validated pharmacophore models (Hypo1 and Phar1)
were used as 3D queries to screen 460,695 compounds belonging
to diverse type of virtual drug-like databases including an in-house
anti-malarial compounds database. The databases screened were
ChemBridge (www.chembridge.com), MayBridge (www.may-
bridge.com), NCI (www.cactus.nci.nih.gov), ChemDiv (www.
chemdiv.com), and two specific natural product databases, viz.,
TCM Database (www.tcm.cmu.edu.tw) and IB Screen Natural
Product database (www.ibscreen.com). Compounds were
sketched using MarvinSketch v6.2.0 and drug-likeness (com-
pounds following Lipinski’s rule of five and Veber’s drug-likeness
[16,17]) and ADMET descriptors were computed at DS before
virtual screening. Hypo1 and Phar1 were used to screen
compounds from these databases by using Best/Flexible Search
Protocol from Ligand Pharmacophore Mapping module of DS. Fifty
best hits (Best S = 50) of each database based on the Fit value with
minimum predicted IC50 values were considered for ADMET study.

2.5. ADMET computation

Absorption, Distribution, Metabolism, Excretion and Toxicity
(ADMET) parameters were computed for all the screened
compounds with maximum fit values and minimum IC50 values.
ADME properties such as Blood-brain Barrier (BBB) permeability,
solubility, Human Intestinal Absorption (HIA), oral bioavailability
and hepatotoxicity were predicted for each virtually screened
compound by Hypo1 and Phar1 and subjected for protein-ligand
docking studies.

2.6. Molecular docking studies

Docking was performed for all the virtual hits using two distant
algorithms viz., MolDock (Molegro Virtual Docker, MVD v6.0) and
LibDock (DS v4.5). MVD is a molecular docking software which is

http://www.chembridge.com
http://www.maybridge.com
http://www.maybridge.com
http://www.cactus.nci.nih.gov
http://www.chemdiv.com
http://www.chemdiv.com
http://www.tcm.cmu.edu.tw
http://www.ibscreen.com
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based on a differential evolution algorithm- the solution of which
takes into account the sum of the intermolecular interaction
energy between the ligand and the protein, and the intramolecular
interaction energy of the ligand [18]. The docking energy scoring
function is based on the modified piecewise linear potential (PLP)
and is inclusive of new hydrogen bonding and electrostatic terms
[19]. MolDock was set at a maximum iteration of 1500 with a
simplex evolution size of 50 and a minimum of 20 runs. The
flexibility of the bonds of the ligands and the side chain flexibility
of the amino acids in the binding cavity were set with a tolerance of
1.10 and strength of 0.90 for docking simulations. RMSD threshold
for multiple cluster poses was computed at <2.00 Å. LibDock is a
component of DS v4.5 (BIOVIA Discovery Studio v4.5). Crystal
structure of human BChE was retrieved from Protein Databank
(PDB ID: 1P0I). Further, the model was energetically optimized
using CHARMM force field (Steepest Decent and Conjugate
Gradient). The active site of the protein is required to be identified
prior to docking analysis. This can be represented as a binding site-
specifically, a set of points on a grid that lies on a cavity. The
binding site employed in the present study is the Butanoic acid
binding site [20]. Two methods are generally considered to define
the binding site for the protein- the first based on the shape of the
receptor using the “Eraser” algorithm, and the second takes into
account the volume occupied by the known ligand positions which
are already present in the active site of the protein. For the present
study, we have employed the second method to predict the active
site of the protein. The docking parameters were validated by
docking the co-crystal molecule with the active site of protein. All
the hits screened from the virtual screening process were
forwarded for the docking analysis, and their binding sites were
computed using DS [14]. Docking results were subsequently
analyzed based on both the docking scores and the ligand-protein
binding interactions with the catalytically important amino acids
of the binding site. The best hits were then forwarded for DFT
analysis.

2.7. Density functional theory (DFT) analysis

The final hits, along with both the most active and the most
inactive compounds in the training set of Hypo1, were considered
Table 1
Experimental and estimated IC50 values of the training set compounds based on best p

Name IC50 nmol/L Errora

Experimental Estimated 

Compound 1 0.035 0.017 �2.1 

Compound 2 0.08 0.5 +6.3 

Compound 3 0.6 1.2 +2 

Compound 4 1.5 2 +1.3 

Compound 5 2.5 3.6 +1.4 

Compound 6 5 2.6 �1.9 

Compound 7 7.2 4 �1.8 

Compound 8 8.1 3.6 �2.3 

Compound 9 12 24 +2 

Compound 10 24 43 +1.8 

Compound 11 57 44 �1.3 

Compound 12 58 43 �1.4 

Compound 13 73 71 �1 

Compound 14 670 1200 +1.7 

Compound 15 780 310 �2.6 

Compound 16 980 480 �2.1 

a Error value calculated as the ratio of measured activity to estimated activity or the in
indicates that the estimated IC50 is higher than the experimental IC50; negative value i

b Activity scale: IC50< 1 nmol/L (Most active, ++++); 1 nmol/L � IC50<10 nmol/L (Ac
(Inactive, +).

c Fit value indicates how well the features in the pharmacophore overlap the chemica
D = displacement of the feature from the centre of the location constraints and T = the rad
the better the fit.
for DFT analysis. DFT calculation was performed at the DFT module
of DS v4.5 by using the Becke3-Lee-Yang-Parr correlation function
(B3LYP). The orbital energies of the frontier orbital, viz., Highest
Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied
Molecular Orbital Energy (LUMO) were computed for all the final
hits. These orbital energy values play an important role in terms of
electron donor and acceptor properties of a molecule and can thus
be utilized to understand the reactivity of a molecule in the active
site of the protein. The band energy gap DE (LUMO-HOMO) was
also computed for all the potentials hits and compared with the
training set compounds.

2.8. Chemical similarity search

Chemical similarity search was performed for all the top hits in
order to search similar scaffolds for the inhibition of BChE. The best
identified inhibitors were used to search for 90% or more
structurally similar compounds in PubChem database. Further,
compounds were also submitted to SciFinder Scholar and PubMed
to ascertain their novelty as BChE inhibitors.

2.9. Design of structural analogues of selected lead compounds

The best scoring compound was further used as the Lead
Compound (LC) to develop bioisosteres which would serve as more
efficient butyrylcholinesterase inhibitors. Series of analogues were
designed by replacing the important side chain of the best hit using
molecular replacements acquired from the Swiss Bioisostere
database (2012) (www.swissbioisostere.ch).This database is a
collection of information on 4.5 million molecular sub-structural
replacements and their information in biochemical assays created
through detection of matching molecular pairs and by the process
of mining bioactivity data in the ChEMBL database [21]. The entire
analogue library was then subjected to molecular docking analysis
using LibDock of DS.

3. Results and discussion

Ligand and structure-based pharmacophore modeling is used
to elucidate the spatial arrangement of chemical features that are
harmacophore Hypothesis Hypo1.

Activity Scaleb Fit Valuec Ref.

Experimental Estimated

++++ ++++ 9.94 [8]
++++ ++++ 8.47 [6]
++++ +++ 8.09 [7]
+++ +++ 7.87 [6]
+++ +++ 7.62 [6]
+++ +++ 7.75 [6]
+++ +++ 7.57 [7]
+++ +++ 7.62 [28]
++ ++ 6.78 [29]
++ ++ 6.54 [7]
++ ++ 6.53 [4]
++ ++ 6.54 [30]
++ ++ 6.32 [4]
+ + 5.11 [31]
+ + 5.69 [9]
+ + 5.49 [4]

verse if the estimated activity is greater than the measured activity. Positive value
ndicates that the estimated IC50 is lower than the experimental IC50 in nmol/L.
tive,+++); 10 nmol/L � IC50< 100 nmol/L (Moderately Active,++); IC50� 100 nmol/L

l features in the molecule. Fit = weight � [max (0, 1-SSE)] where SSE = (D/T)2, where
ius of the location constraint sphere for the feature (tolerance). The higher the value,

http://www.swissbioisostere.ch


650 D. Gogoi et al. / Biomedicine & Pharmacotherapy 85 (2017) 646–657
crucial to inhibit biological targets. In the current investigation, a
set of known BChE inhibitors was used to develop a quantitative
pharmacophore hypothesis in order to identify novel BChE
inhibitors from selected chemical databases. A structure-based
pharmacophore model was also designed using the BChE active
site and subjected for virtual screening of chemical databases.

3.1. Ligand and structure-based pharmacophore model generation

Ten ligand-based pharmacophore models were developed from
a training set of 16 compounds with inhibitory activity against
BChE in nmol/L concentration (Table 1). Structures of the training
set compounds are depicted in Fig.1, and the statistical factors such
as cost, correlation coefficient (r), and RMSD for each hypothesis
have been enumerated in Table 2. According to the Debnath
analysis [22], the best hypothesis should have the highest cost
difference, a good correlation co-efficient, the least RMSD, and a
significant total cost value. Cost difference and configuration cost
are the determinants in identification of top pharmacophore
hypotheses. Cost difference is the difference between the null and
total cost. A 40–60 bit difference is assumed to have a predicted
correlation probability of 75–90% and a difference greater than 60-
bit is assumed to have a predicted correlation probability of more
than 90%. Here, the top hypothesis Hypo1 has a cost difference of
Fig. 2. Best HypoGen pharmacophore model Hypo1: (A) chemical features of Hypo1 (B) g
employed in this study.

Table 2
Results of top pharmacophore hypotheses by HypoGen Algorithm.

Hypothesis Total Cost Cost Differencea RMSD 

Hypo1 77.179 112.413 1.066 

Hypo2 79.557 110.035 1.259 

Hypo3 80.297 109.295 1.279 

Hypo4 80.937 108.655 1.155 

Hypo5 80.966 108.626 1.302 

Hypo6 80.980 108.612 1.338 

Hypo7 84.725 104.867 1.508 

Hypo8 85.357 104.235 1.529 

Hypo9 85.964 103.628 1.540 

Hypo10 88.167 101.425 1.636 

Null Cost = 189.592, Fixed Cost = 88.167, Configuration Cost = 16.79.
a Cost difference = null cost-total cost; abbreviation used for features: HBA, hydrogen-

Hydrophobic Aromatic; RA, Ring Aromatic.
40–60 bits that amounts to a value of 112.413 bits and suggests a
chance of representing a significant correlation in the data [10,12].

Hypo1 shows the highest correlation coefficient of 0.968 and
thus establishes its superior predictive capacity in comparison to
Hypo 2, Hypo 3 and Hypo10. Correlation coefficient is based on the
linear regression derived from geometric fit index. RMS value is the
deviation of the predicted activity value from the experimental
value. The RMS values of Hypo1, Hypo2 and Hypo3 are 1.066, 1.259
and 1.279 respectively. Minimum RMS value of Hypo1 is significant
and thus supports the novelty of the hypothesis [20]. Reliability of
Hypo1 also depends on whether the total cost value is distant from
the null cost and close to the fixed cost. Here, Hypo1 shows the
total and null cost scores to be 77.179 and 189.592 respectively.
Configuration cost is another important cost function to analyze
the reliability of pharmacophore hypothesis and the configuration
cost of a hypothesis is required to be less than 17 for a statistically
significant model. The configuration cost has been found to be
16.79 which support Hypo1 as a novel hypothesis. Having satisfied
all requirements of a good hypothesis, Hypo1 was finally identified
as the best ligand-based hypothesis to be used as 3D query in
virtual screening. Hypo1 consisted of two Hydrogen Bond Acceptor
features (HBA), one Hydrogen Bond Donor (HBD), one Hydropho-
bic-Aliphatic (Hy-Ali) feature and one Ring Aromatic (RA) feature.
The chemical features and 3D spatial arrangement of Hypo1 are
shown in Fig. 2.
eometric parameters of Hypo1 (C) flowchart depicting the virtual screening process

Correlation Features Max Fit

0.968 HBA, HBD, Hy-Ali, RA 10.224
0.954 HBD, Hy-Ali, 2Hy-Ar, AR 8.538
0.953 HBD, Hy-Ali, 2AR 9.533
0.963 HBA, HBD, Hy-Ar, RA 11.359
0.951 HBD, Hy-Ali, Hy-Ar, RA 9.717
0.948 HBD, Hy-Ali, Hy-Ar, RA 8.910
0.934 HBA, HBD, Hy-Ar, RA 8.633
0.932 HBA, Hy-Ali, 2Hy-Ar, RA 8.934
0.931 2HBA, Hy-Ali, 2Hy-Ar 9.322
0.922 2HBA, Hy-Ali, 2Hy-Ar 8.719

bond acceptor; HBD, hydrogen-bond donor; Hy-Ali, Hydrophobic Aliphatic; Hy-Ar,



Fig. 3. Overlay of Most Active (A) and Most inactive compound (B) of the training set compounds on the Hypo1; Spatial features of Phar1 (Structure-based Pharmacophore
hypothesis) in the active site of BChE receptor model (C).
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Hypo1 was used to estimate the inhibitory activity of 16
internal training set compounds to elucidate its predictive power
in identifying potential BChE inhibitors and was found to be able to
predict the inhibitory activity values of the 16 training set
compounds in the same order of magnitude except Compound 3
(Table 1), which was underestimated by Hypo1 as moderately
active. Hypo1 aligned to most active (0.035 nmol/L) and most
inactive compounds (980 nmol/L) as depicted as Fig. 3. The
correlation plot of estimated versus and predicted values in
logarithmic scale has been shown in Supplementary data, Fig. S2.
Analysis of these results established Hypo1 as a remarkable
pharmacophore model with minimum error.

3.2. Structure-based pharmacophore modeling

Structure-based pharmacophore hypothesis (Phar1) is com-
prised of six pharmacophoric features (Fig. 3). Phar1 consists of
three Hy features, two HBD features and one HBA feature. In
addition to these features seven exclusion volume spheres were
also taken into consideration to establish the model. All
pharmacophoric features are around the active site of butanoic
acid of the BChE receptor model. Hence, compounds mapping on
some of these identified features may have the potential to inhibit
BChE with considerable efficiency.

3.3. Validation of pharmacophore hypothesis

Hypo1 and Phar1 were both validated using standard methods
to confirm their predictive efficiency. Hypo1 was validated using a
test set of known BChE inhibitors with the same order of activity
range as in training set compounds. The test set comprised of 40
such compounds retrieved from literature and were used to
examine the ability of Hypo1 in the same activity range. Except for
one compound (underestimated as active compound), all the test
set compounds have been predicted to be in their own activity
range by Hypo1 (Table 3). It showed the correlation co-efficient (r)
of 0.94 between the actual and predicted BChE inhibitory activity
for the test set (Supplementary data, Fig. S2). This result implies
that Hypo1 was not only efficiently predicting the inhibitory
activity of the internal training set compounds but was also able to
perform the same for the external test set molecules. This validates
Hypo1 as a significant pharmacophore model.

Phar1 was also validated using a separate test set of 20 known
BChE inhibitors as given in the Supplementary data, Table S2. Test
set molecules were retrieved from literature with their activity
values and Phar1 was used to screen them using Screen ligand
option of DS v4.5. Test set compounds were found to map to 2–3
features by Phar1. Hence, Phar1 was validated to be a reliable
pharmacophore model to identify potential BChE inhibitors in the
virtual screening databases.

Fisher’s randomization test was further applied to Hypo1 in
order to confirm the hypothesis. Here, 95% confidence level was
chosen, and 19 random spreadsheets were developed to produce a
random hypothesis (Table S3 as Supplementary data). Further, the
random hypotheses thus generated were compared with the
original hypothesis. The result of this test also supported the
novelty Hypo1 as a true hypothesis.

3.4. Virtual screening

Well-validated hypotheses, Hypo1 and Phar1 were further used
as 3D pharmacophore queries for retrieving novel candidate
molecules from six databases of drug-like compounds. Of these,
two are natural product databases. The reason for consideration of
natural product databases is that compounds which have a
biological origin are generally seen to have minimum side effects
as candidate drugs. Here, we have screened a total of 600
compounds from 460695 database compounds which displayed



Table 3
Experimental and estimated IC50 values of the test set compounds based on best pharmacophore hypothesis Hypo 1.

Name IC50 nmol/L Errora Activity Scaleb Ref.

Experimental Estimated Experimental Estimated

Compound 1 0.0212 0.041 1.958 ++++ ++++ [8]
Compound 2 0.038 0.008 �4.467 ++++ ++++ [6]
Compound 3 0.1 0.017 �5.868 ++++ ++++ [6]
Compound 4 0.139 2.068 14.882 ++++ ++++ [32]
Compound 5 0.141 0.053 �2.630 ++++ ++++ [32]
Compound 6 0.15 0.0185716 �8.076 ++++ ++++ [6]
Compound 7 0.293 0.155152 �1.888 ++++ ++++ [32]
Compound 8 0.523 0.0779519 �6.709 ++++ ++++ [32]
Compound 9 0.969 0.0676563 �14.322 ++++ ++++ [32]
Compound 10 1.68 0.315104 �5.331 +++ ++ [32]
Compound 11 3.4 27.2468 8.013 +++ ++ [33]
Compound 12 8.06 1.41006 �5.716 +++ +++ [7]
Compound 13 12.3 28.6509 2.329 ++ +++ [7]
Compound 14 21.4 147.545 6.894 ++ + [34]
Compound 15 25 7.25098 �3.447 ++ +++ [35]
Compound 16 25.2 21.1568 �1.191 ++ ++ [36]
Compound 17 31.6 31.173 �1.013 ++ +++ [36]
Compound 18 51.29 90.1351 1.757 ++ ++ [37]
Compound 19 66.3 16.0304 �4.135 +++ +++ [7]
Compound 20 72.69 24.5482 �2.961 +++ +++ [7]
Compound 21 96 132.91 1.383 ++ ++ [38]
Compound 22 137 18.8227 �7.278 ++ +++ [39]
Compound 23 144 1660.55 11.532 + + [40]
Compound 24 189 98.3994 �1.920 + + [39]
Compound 25 287 357.464 1.245 + + [38]
Compound 26 330 803.294 2.434 + + [41]
Compound 27 360 1304.11 3.622 + + [30]
Compound 28 470 5666.57 12.057 + + [36]
Compound 29 542 206.278 �2.627 + + [38]
Compound 30 641 375.381 �1.707 + + [42]
Compound 31 776 122.724 �6.323 + + [28]
Compound 32 800 1255.1 1.568 + + [43]
Compound 33 958 5962.43 6.223 + + [44]
Compound 34 1300 628.313 �2.069 + + [35]
Compound 35 1750 6306.34 3.603 + + [41]
Compound 36 2080 10868.4 5.225 + + [43]
Compound 37 2250 1260.29 �1.785 + + [43]
Compound 38 2470 3105.97 1.257 + + [43]
Compound 39 3300 1015.72 �3.248 + + [45]
Compound 40 4700 8710.31 1.958 + + [45]

a Positive value indicates that the estimated IC50 is higher than the experimental IC50; negative value indicates that the estimated IC50 is lower than the experimental IC50 in
nmol/L.

b Activity scale: IC50< 1 nmol/L (Most active, ++++); 1 nmol/L � IC50< 10 nmol/L (Active,+++); 10 nmol/L � IC50< 100 nmol/L (Moderately Active,++); IC50� 100 nmol/L
(Inactive, +).
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maximum fit to Hypo1 and Phar1 as depicted in Fig. 2. Prior to
virtual screening, all selected database compounds were predicted
for drug-likeness properties (Lipinski’s and Veber’s rule) to
minimize the database to a drug-likeness optimized library. We
have finally selected 430 compounds with optimum ADME
parameters such as BBB penetration, solubility, Cytochrome
p450 (CYP50) inhibition, 2D6 inhibition, hepatotoxicity, Human
Intestinal Absorption (HIA), Plasma Protein Binding (PPB) (Fig. S2,
Table 4
Docking results of best hits.

Sl No. Name DS v4.5 MVD v6.0 

LibDock Score MolDock Score Rerank Score H-Bond

1 ZINC85569406 151.715 �174.284 �149.41 �13.826 

2 CB2 150.235 �124.132 �99.7694 �6.644 

3 ZINC58594092 148.614 �163.261 �136.001 �4.847 

4 CB4 141.41 �132.109 �106.583 �0.692 

5 ZINC14927255 140.131 �145.624 �114.589 �8.299 

6 ZINC01408178 139.213 �174.752 �120.475 �0.453 

7 ZINC85569423 151.554 �160.088 �133.993 �3.908 
Supplementary data). These 430 compounds were then forwarded
for molecular docking computation.

3.5. Molecular docking

Molecular docking is a well-established method to predict the
molecular-level interactions of small molecules in the receptor
binding cavity of biological targets. The 3D structure of BChE
Interacting amino acids

Phe329, Gly116, Trp82, His438, Ser28, Gly117, Trp231, Leu286
Pro84, Tyr332, Ser198, Gly438, Trp82, Gly115, Asp70, Phe329, Ala328
Ile69, Asp70, Gly117, His438, Ser198, Phe329, Leu286, Trp231
Gly117, Gly116, Glu97, Phe329, Trp231, Leu286, Phe398, Trp82, Thr120, Gly115
Gly78, Ser79, His438, Ser198, Asn83, Gly116, Gly117, Trp231
His438, Ala328, Trp82, Trp231, Gly439, Asp70, Leu286
Asp70,Asn289, Tyr332, Pro285, Phe329, Ala328, His438



Table 5
Orbital energy value of hits and training set compounds.

Name LUMO Energy (kcal/mol) HOMO Energy (kcal/mol) Band Energy Gap DE (LUMO-HOMO)

ZINC58594092 0.0148 �0.055 0.069
ZINC01408178 �0.275 �0.368 0.093
ZINC85569406 �0.2141 �0.329 0.115
ZINC14927255 �0.047 �0.197 0.150
Most active Compound �0.0499 �0.212 0.160
CB4 0.0008 �0.164 0.164
ZINC85569423 �0.052 �0.221 0.169
CB2 �0.0042 �0.183 0.178
Least active Compound 0.0003 �0.2439 0.244
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complexed with Butanoic Acid was acquired from Protein Data
Bank [14]. Prior to docking, the protein model was optimized using
Steepest Descent and Conjugate Gradient CHARMM based force
fields. Docking was performed using two distant algorithms, viz.,
MolDock and LibDock. Consensus docking scores such as LibDock,
Fig. 4. Overlay of Hypo1 on the best hits- (A) ZINC58594092 (B) ZINC85569406 (
MolDock, Rerank and H-Bond energy values were computed and
compared with those of the co-crystal ligand. Molecular docking
was performed on the butanoic acid binding site of BChE after
initially verifying the ability of this co-crystal ligand using the
selected parameters to produce the most suitable binding
C) CB2 (D) CB4 (E) ZINC14927255 (F) ZINC01408178 and (G) ZINC85569423.



Fig. 5. 2D docking Interaction plots of best hits at the BChE active site – (A) ZINC58594092 (B) ZINC85569406 (C) CB2 (D) CB4 (E) ZINC14927255 (F) ZINC01408178 and (G)
ZINC85569423, (H) Aromatic Edge/Face surface and (I) Hydrogen bond donor/acceptor of ZINC58594092 (best hit) binding site.

Fig. 6. A 2D representation of the seven final hit compounds – (A) ZINC58594092
(B) ZINC85569406 (C) CB2 (D)CB4 (E) ZINC14927255 (F) ZINC01408178 and (G)
ZINC85569423.

654 D. Gogoi et al. / Biomedicine & Pharmacotherapy 85 (2017) 646–657
orientation [20]. After validation of the same, the same parameters
were employed to dock the candidate compounds onto the active
site of the protein. The top-ranked 29 compounds based on the
highest docking scores were consequently selected to be for-
warded as the best potential inhibitors to be forwarded for docking
analysis [14]. Of these 29 final hits, 11 compounds were screened
by Hypo1 and the remaining 18 compounds were screened from
Phar1. Docking results of the selected hits have been presented in
Table 4. Significant interactions of all the hits were observed with
the crucially located Leu286 of the acyl pocket of the BChE active
site- which has been established by previous studies to contribute
to substrate specificity and which thus establishes the selectivity of
the selected hits for the target enzyme [14].

3.6. Density functional theory (DFT)

HOMO and LUMO are responsible for charge transfer in
chemical reactions and hence can be used to analyze the energy
transfer and stability of small molecules in the active site of BChE
protein [20,23]. The HOMO and LUMO energy values were
computed and the energy difference (band energy gap) DE
(LUMO-HOMO) was then derived to understand the reactivity at
molecular level. A low band energy gap is predictive of a reactive
compound while a wide energy gap implies that the activity is not
sufficient at the active site of a protein receptor [24]. On the basis of
the band energy gap, seven compounds were identified as
presented in Table 5 and Fig. 7- the DE values of which were
lower than the most active (DE = 0.1602) compound in the training
set data.

Mapping of top hits to Hypo1 is depicted in Fig. 4. Of all the
proposed hits, the compound ZINC58594092 was found to be the
most suitable drug candidate as it satisfied all necessary criteria to
be a potent BChE inhibitor. ZINC58594092 was found to interact



Fig. 7. The orbital energy values and energy gap for compound ZINC58594092.
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with amino acids Ile69, Asp70, Gly117, His438, Ser198, Phe329,
Leu286 and Trp231 via eight different interactions. It formed two
hydrogen bonds with Asp70 and Ser198, three carbon-hydrogen
bonds with Ile69, Gly117 and Trp231, and was also observed in the
binding orientation of ZINC58594092. Further, two pi-pi and pi-
alkyl interactions with Phe329 and Leu286 were also predicted. An
attractive charge bond was observed with His438 as depicted in
Fig. 5. The 2D representation of best hits along with ZINC58594092
has been presented in Fig. 7. The atomic orbital composition of
ZINC58594092 has been displayed in Fig. 6. ZINC58594092 also
had the least band energy gap of 0.069 and thus was strongly
supported to have a strong inhibitory activity in the BChE active
site. The novelty of the six best hits was verified by using PubChem
and ChEMBL databases for Chemoinformatics studies. Since
compound ZINC58594092 was predicted as the best lead molecule
with the most potential to be forwarded as a candidate drug, it was
subsequently subjected for chemical similarity search and design
of structural analogues.

3.7. Chemical similarity search and development of analogues

The best hit ZINC58594092 was further submitted to the
PubChem database to identify structurally similar compounds. The
chemical similarity search resulted in 320 compounds, which were
95% or more similar to the best hit. In order to develop more
potentially reactive BChE inhibitors, a series of bioisostere-based
analogues of ZINC58594092 were designed using the Swiss
Bioisostere database. Finally, ten analogues were developed and
forwarded for docking studies (Supplementary data). Best
analogues of ZINC58594092 have been shown in Fig. S5.

4. Discussion

BChE is imperative in mediating the central cholinergic
transmission in healthy neurological functioning. Abnormal
expression of BChE is associated with the anomalous neurological
conditions collectively referred to as the AD brain. Therefore, its
association with the progression of neuropathological changes
makes it a justifiable target for treatment of AD. This may be
achieved through the mechanism of ameliorating the cholinergic
deficiency of the brain [8].

The current medicines that are prescribed for treatment of
mild to moderate AD include Rivastigmine, Tacrine, Huperzine A.
However, treatment with these medicines are rife with common
complaints from side effects which include, but are not limited to,
nausea, loss of appetite, increased frequency of bowel movement,
GI side effects, possible liver damage etc [12–14]. The present
study involved a novel computational approach towards identifi-
cation of potential BChE inhibitors as alternatives to the present
batch of medicines which primarily target AChE, and thus aim to
significantly reduce the side-effects normally associated with the
same. These candidate molecules could be further subjected to
drug development and forwarded as better alternatives to the
current batch of medicines used for the treatment of AD.

Though indicated along with AChE to be responsible for the
progression of AD, previous research shows that BChE has crucial
differences with the AChE target which can be used to selectively
inhibit BChE by potential drug candidates. One of these differences
is the constitution of the hydrophobic residues lining the gorge of
the pocket in BChE, while in AChE the same residues consist of
aromatic groups of compounds. Furthermore, the presence of the
amino acids Leu286 and Val288 in the acyl-binding pocket of BChE
in lieu of Phe288 and Phe290 in that of AChE, as well as the
difference of the conformation of the acyl loops in both of these
enzymes further establishes the selectivity of potential drug
candidates towards BChE [14,25,26].

In the present report, ligand and structure-based pharmaco-
phore models were developed to identify potential and selective
BChE inhibitors. The best ligand-based pharmacophore model
(Hypo1) consisted of four features (HBA, HBD, Hy-Ali and RA).
Same features were also considered for the discovery of novel
inhibitors while employing this pharmacophore model approach
in previous reports [18]. Hypo1 was evaluated and validated using
standard protocols such as test set, Fisher’s Test and Leave-one-
out methods to confirm its predictive power in identifying novel
BChE inhibitors. Hypo1 also exhibited a high correlation
coefficient of 0.968 in predicting IC50 values of training set data.
A well-validated structure-based pharmacophore model (Phar1)
was also developed from the active site of the crystal structure of
BChE.

Both models Hypo1 and Phar1 were used as 3D queries in the
virtual screening process. Subsequently, compounds with suitable
drug-likeness properties and optimum ADMET values were
subjected for docking studies using MVD and LibDock docking
softwares. LibDock has been reported to perform at par with
docking programs that use genetic/growing/Monte Carlo driven
algorithms [27]. Based on both docking analysis and ligand-protein
interaction study, 29 compounds were selected as potential hits.
Significant interactions of the hits were observed with the crucially
located Leu286 of the acyl pocket of the BChE active site- which
along with Val288, has been established by previous studies to
contribute to substrate specificity and which thus establishes the
selectivity of the selected hits for the target enzyme [14].

Density functional theory (DFT) is a computational quantum
mechanical modelling technique used in the physical sciences to
probe the electronic structure of atoms, molecules, and the
condensed phases. Frontier orbital energies, viz., HOMO and LUMO
were used to calculate the band gap energy which was
subsequently employed to ascertain the strength and stability of
the molecular interactions. Seven compounds with minimum band
gap energy (DE = LUMO-HOMO) were finally identified as potential
inhibitors of BChE. The top hit ZINC58594092 was identified on the
basis of obtaining top scores in all the virtual screening parameters
involved in the present investigation. It was hence chosen for
further chemical similarity search and the development of
bioisostere-based structural analogues.
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