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Abstract

Numerous efforts have been devoted to investigating crash occurrence as related to roadway design features, environmental factors and traffic
conditions. However, most of the research has relied on univariate count models; that is, traffic crash counts at different levels of severity are
estimated separately, which may neglect shared information in unobserved error terms, reduce efficiency in parameter estimates, and lead to
potential biases in sample databases. This paper offers a multivariate Poisson-lognormal (MVPLN) specification that simultaneously models crash
counts by injury severity. The MVPLN specification allows for a more general correlation structure as well as overdispersion. This approach
addresses several questions that are difficult to answer when estimating crash counts separately. Thanks to recent advances in crash modeling
and Bayesian statistics, parameter estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the Metropolis—Hastings (M—H)
algorithms for crashes on Washington State rural two-lane highways. Estimation results from the MVPLN approach show statistically significant
correlations between crash counts at different levels of injury severity. The non-zero diagonal elements suggest overdispersion in crash counts at all
levels of severity. The results lend themselves to several recommendations for highway safety treatments and design policies. For example, wide

lanes and shoulders are key for reducing crash frequencies, as are longer vertical curves.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Roadway safety is a major concern for the general public
and public agencies. Roadway crashes claim many lives and
cause substantial economic losses each year. In the U.S. traffic
crashes bring about more loss of human life (as measured in
human-years) than almost any other cause—falling behind only
cancer and heart disease (NHTSA, 2005). The situation is of
particular interest on rural two-lane roadways, which experience
significantly higher fatality rates than urban roads. The annual
cost of traffic crashes is estimated to be $231 billion, or $820
per capita in 2000 (Blincoe et al., 2002). These costs do not
include the cost of delays imposed on other travelers, which
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also are significant, particularly when crashes occur on busy
roadways. Schrank and Lomax (2002) estimate that over half of
all traffic delays are due to non-recurring events, such as crashes,
costing on the order of $1000 per peak-period driver per year,
particularly in urban areas. Thus, while vehicle and roadway
design are improving, and growing congestion may be reducing
impact speeds, crashes are becoming more critical in many ways,
particularly in societies that continue to motorize.

Given the importance of roadway safety, there has been con-
siderable crash prediction research (see, e.g., Hauer, 1986, 1997,
2001; Abdel-Aty and Radwan, 2000; Ulfarsson and Shankar,
2003; Kweon and Kockelman, 2005; Lord and Persaud, 2000;
Lord et al., 2005; Ma and Kockelman, 2006a,b; Karlaftis and
Rarko, 1998; Shankar et al., 1998; Khattak et al., 2006). Crash
frequencies are commonly collected by severity on relatively
homogenous roadway segments, supporting the development of
crash count models. However, such research has relied on uni-
variate count models; that is, traffic crash counts at different
levels of severity are estimated separately. The widely used uni-
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variate count data models ignore the following issues: interde-
pendence due to latent factors is likely to exist across crash rates
at different levels of severity for a specific segment of roadway.
Recently, Ma and Kockelman (2006a,b) applied a multivariate
Poisson (MVP) specification to model crash counts at different
levels of severity simultaneously. However, this MVP specifica-
tion allows only for a common added Poisson error term, result-
ing in equal positive correlations across crash counts and a very
specific data pattern where all counts are equally shifted. In addi-
tion, this MVP specification does not allow for overdispersion.

Using a multivariate Poisson-lognormal (MVPLN) specifi-
cation, as well as Bayesian estimation techniques, this work
models correlated traffic crash counts simultaneously at differ-
ent levels of severity. The MVPLN specification allows for a
more general correlation structure as well as overdispersion.
This approach addresses several questions that are difficult to
answer by estimating them separately. With recent advances in
crash modeling and Bayesian statistics, parameter estimation
is done within the Bayesian paradigm, using a Gibbs Sampler
and the Metropolis—Hastings (M—H) algorithms. The data come
from Washington State rural two-lane highways in 2002, using
the Highway Safety Information System (HSIS) database. The
results lend themselves to recommendations for highway safety
treatments and general design policies.

This paper is organized as follows: related research studies
are reviewed first. The model’s formulation and data sets are then
discussed, followed by estimation results, concluding remarks,
and future research directions.

2. Literature review

Models of crash (or injury) counts can be classified into
two major streams: (1) the conventional univariate Poisson
and related models, such as the negative binomial (NB); (2)
potentially more realistic specifications, such as the MVP and
MVPLN. The first stream has provided a means for investi-
gating associations between crash frequency and many crucial
factors, such as traffic volume, access density, posted speed limit
and number of lanes (see, e.g., Miaou et al., 1993; Miaou and
Lum, 1993; Miaou, 1994, 1996, 2001; Fridstrgm et al., 1995;
Johansson, 1996; Vogt and Bared, 1998; Vogt, 1999; Balkin and
Ord, 2001; Zegeer et al., 2002; Pernia et al., 2004). There also
has been considerable interest in models that allow for excessive
zeros, such as zero-inflated Poisson (ZIP) and zero-inflated neg-
ative binomial (ZINB) regression approaches (see, e.g., Lord et
al., 2005; Shankar et al., 1997; Garber and Wu, 2001; Lee and
Mannering, 2002; Kumara and Chin, 2003; Miaou and Lord,
2003; Rodriguez et al., 2003; Shankar et al., 2003; Noland and
Quddus, 2004; Qin et al., 2004).

Due to computational and statistical advances, panel data
(in which a cross-section of segments, intersections, etc. is
observed over time) have become more amenable to rigor-
ous analysis. In traffic crash analyses, there are a great many
unobserved explanatory variables that affect frequencies and
severities. Panel data can be used to deal with heterogene-
ity among individuals. To address the heterogeneity, many
recent studies have used (univariate) panel count data models,

such as random-effect negative binomial (RENB) and fixed-
effect negative binomial (FENB) regression models (Kweon and
Kockelman, 2005; Karlaftis and Rarko, 1998; Shankar et al.,
1998; Chin and Quddus, 2003).

Such past research endeavors, however, have neglected the
role of unobserved factors across different types of counts
(e.g., the number of fatalities and the number of disabling
injuries). Recognizing the need for such considerations, Ladron
de Guevara and Washington (2004) investigated the simultane-
ity of fatality and injury crash outcomes. Bijleveld (2005) also
examined the correlation structure between crash and injury
counts. As expected, he found significant correlations. How-
ever, he did not control for any covariates. Multivariate models
(of count data), like Ma and Kockelman’s MVP (2006a,b) or Li
et al’s MVZIP (1999), can help correct for this.

This work models correlated traffic crash counts simul-
taneously at different levels of severity using an MVPLN
specification, allowing for a very general correlation structure
as well as overdispersion. Such specifications are challenging to
estimate. Karlis (2003) developed an EM algorithm for an MVP
model, and Ma and Kockelman (2006a,b) used Gibbs sampling,
as well as Metropolis—Hastings algorithms, within an MCMC
simulation framework.

In recent years, Bayesian methods have found several appli-
cations in traffic crash analysis. Christiansen et al. (1992) and
MacNab (2003) developed hierarchical Poisson models for crash
counts and surveillance data. Miaou and Song (2005) developed
a Bayesian multivariate spatial generalized linear mixed model
(GLMM) to rank sites for safety improvements using Texas’
county-level crash data. And Liu et al. (2005) used a hierarchi-
cal Bayesian framework to estimate ZIP regression models and
develop safety performance functions (SPFs) for two-lane high-
ways. Pawlovich et al. (2006) employed a Bayesian approach
to assess impacts of road design measures on crash frequencies
and rates. And Washington and Oh (2006) developed a Bayesian
methodology for incorporating expert judgment in ranking coun-
termeasure effectiveness under uncertainty.

Bayesian estimation methods generate a multivariate poste-
rior distribution across all parameters of interest, as opposed to
the traditional maximum likelihood estimation approach, which
emphasizes and offers only the modal values of parameters (and
relies on asymptotic properties to ascertain covariance).

This paper introduces an MVPLN approach to simultane-
ously model crash counts by injury severity. A Gibbs sampler
and a Metropolis—Hastings (M—H) algorithm are used to esti-
mate the parameters of interest using Bayesian methods. For
comparison purposes, a series of independent (univariate) Pois-
son models for injury counts also are estimated.

3. Model structure and estimation
3.1. Mathematical formulation

Univariate Poisson regression models cannot account for
correlations for different levels of severity; instead, one needs

multivariate count data models. Crash counts (across severities)
effectively require a multivariate model because the response
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is multi-dimensional. Moreover, in practice, omitted variables
(such as driveway density and sight distances) may simultane-
ously affect all crash counts at different levels of severity for a
particular roadway segment, thus introducing correlation. Sev-
eral such models have been developed (see, e.g., Karlis, 2003;
Arbous and Kerrich, 1951; King, 1989; Winkelmann, 2000;
Kockelman, 2001; Tsionas, 2001). However, these specifications
support only a common unobserved error term among counts.

Here, the focus is placed on the correlated counts within
individual roadway segments. Crash counts across roadway
segments are assumed to be independent (e.g., there is no spa-
tial correlation®). The variance-covariance matrix of y can be
expressed as below:

2 0 .. 0
0 2 --- 0
Var(Ynle) = . (1)
0 0 2,
where
wlil w’iz wlis
Wy Wy ot Wig
Q2= _ for i=1,2,....n (2
a)is1 wisz “)gs

Let &; = (&1, &i2, . . . &is) denote the severity-level-specific
unobserved heterogeneity for roadway segment i [i=1, 2,
..., n, where n is the number of roadway segments], s denote
the severity level [s=1, % Cos S, th:re S is the number of
severity levels], and ¢ = (¢'1, €1, ..., &,) denote the severity-
level-specific unobserved heterogeneity across roadway
segments.

§islexp(og) — 1184

Let A; = diag(i,-). This is an S x S matrix, where Xi =
Mty Ay ooy Ais) and Ay = Eouis. Let u; = exp(¢;), where
u; = (uj1, upp, ..., u;s). Conditioning on B and X, the mean
and covariance matrix of the marginal distribution of y; can be
obtained as follows (Greene, 2003):

EGi|B, xi, ) = Ez,(Es., 5i |8, xi, ki, X))
= E;,(diag(§)ii;) = A; 4)
Var(y; | B, xi, £) = Eg,(Vary,a, 3i |8, xi, i, X))
+Var11,-(E}i|ﬁ,- (3;! |ﬁv Xis ﬁi? 2))
= E;,(diag(diag(&)ii;)) + Var; (diag(;)ii;)

= Aj + Aj[exp(X) — 11']4; )
where  B=(B1.Bo...Bs)s  xi=(@ilXide..xis)s & =
(i1, &2, ..., &), 117 is an identity matrix of dimension

o1l O12 -+ Ol§

o021 02 -+ O35
S, and ¥ = . The length of B is

os1 0s2 -+ OS§
k=ky+ky +...+ks, where ks is the length of S;.
From Eq. (5), the variance—covariance terms, across counts,
can be obtained as follows:
Cov(yis, yi) = 0 + Ais[exp(os) — 1]y
= &y exp(oss/2)[exp(oy) — 11§ exp(oy/2),
for s # IVar(yis, yis) = Ais + Aislexp(oygs) — 1]A;s (6)

The correlation between crash counts within segments is
obtained as follows:

Corr(yis, yir)

exp(og) — 1

V& exp(=04/2) + &3 [exp(o) — 11/ explon/2) + Elexpon) — 1]

@)

V& exp(—0us/2) + explow) — 11/ exp(—ou/2) + explon) — |

Assume that crash counts yjs, conditioned on &;, the severity-
level-specific explanatory variables x/; and their coefficients of
Bs, are independent Poisson distributed.

Yis |§i, Bs , xis ~ Poisson(A;s) 3)

where ;s = exp(x Bs + &is). The unobserved heterogeneity
terms &; are assumed to be uncorrelated with the control (i.e.,
explanatory) variables.

3 In reality, spatial correlation may exist and be significant. For example,
zoning and design policies create correlation across sites within a city; access
management and other policies may simply shift the location of certain crash
types. The former leads to positive correlation, the latter to negative. Song et
al. (2006) developed Bayesian multivariate spatial models to investigate spatial
correlations in four types of crashes using Texas’ county-level data.

where s # I.

This correlation is unrestricted and can be positive or neg-
ative, depending on the sign of oy, the (s,/) element of
¥. Moreover, this specification implies overdispersion*, since
o¢s>0fors=1,2,..., 8.

Based on Eq. (3), the likelihood of observation i can be rep-
resented by the following equation:

S
PGilEi, B, xi) = | [ froisson(yis 14is) ®)

s=1

where Ajs = &jsuis = CXP(XQS,Bs + &is).

4 Overdispersion refers to the situation in which variance is greater than mean.
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Unfortunately, the marginal distribution of the crash counts
y; cannot be obtained by direct computation. Obtaining the
marginal distribution requires the evaluation of an S-variate inte-
gral of the Poisson distribution with respect to the distribution
of g,‘,

N
P(3i ’)Lis )= /HfPoisson()’is |Xis, Bss eis )ps€: 10, X 1dé;
s=1
(€))

where ¢ is the S-variate normal distribution. This S-dimensional
integral cannot be algebraically implemented in closed form for
arbitrary X.

3.2. Estimating parameters via MCMC

In order to illuminate crash rate relationships, the MVPLN
model’s unknown parameters need to be estimated. Chib et
al. (1998) showed how to estimate a posterior distribution of
unknown parameters for their models of panel count data’, and
Plassmann and Tideman (2001) developed a Gibbs sampler to
estimate parameters in a univariate Poisson-lognormal model.

Based on Press (1982) and Gelman et al. (2004), the Wishart
distribution is commonly used as a conjugate prior for the
inverse of variance-covariance parameters. According to Press
(1982), the Wishart and normal distributions are very helpful
for multivariate analysis. Suppose that the parameters (8, X)
independently have the prior distributions:

B~ ¢cBo, V), Z'~ fw(vs, Vx) (10)
where Bo=(Bot, Bozs e Bos)'s Vg, =
VﬁOI () . 0

0 Vg, O 0
, fw (.,.) is the Wishart distri-

0 0 o Vs
bution with vy degrees of freedom and scale matrix Vy, and
Bo, Vpo, vs and Vy are known hyperparameters. The prior
distribution for B¢ can written as Bs ~ ¢y, (Bos, Vg,,) for s=1,
2,...,8.

According to Bayes’ theorem (posterior X prior X
likelihood), the posterior kernel can be written as follows:

(2, Bly. X) o< ¢rlBo. Vo) fw (v, V)] |

i=1

s
/HfPoisson(yis Xis, Bs €is )ps(€i 10, X)dE;
s=1

Using data augmentation®, the latent effects & can be thought
of as (“nuisance”) parameters to be estimated. Therefore, the

3 Estimation of 8 in the panel count data models is similar to estimation of
in the MVPLN model.

6 Data augmentation views unobserved or latent variables as unknown param-
eters (to be estimated), in order to establish iterative algorithms.

joint posterior density of X, ¢, and 8 is written as follows:

n(X, e, Bly, X) o or(Bo, Vg) fw(vs, Vy)
n S

TIT [ feoissonGis Ixis. Bs. &is)sEi 10, 2) (1)

i=ls=1

Thanks to this technique, the parameters can be “blocked”
as X, ¢, and B, after which the joint posterior is simulated by
iteratively sampling from the following three conditional dis-
tributions: 7?[X~!|¢], mPlely, X, B, X1, and #P[Bly, X, &, X1,
where 777 (]) denotes the posterior conditional density function.

The draws are sampled sequentially using the most recent
values of the conditioning variables at each step.

3.3. Gibbs sampler with embedded M—H algorithms

After manipulating the posterior equation (11), the posterior
of ¥~! conditional on data and other parameters can be written
as

n
m(Z o) o fw(Z 7 vg, V)] [esEil0. Z) (12)
i=1
where fyy denotes the Wishart density with vy, degrees of freedom
and scale matrix Vy.
After manipulating Eq. (12), this density can be written as a
Wishart kernel with degrees of freedom n + vy and scale matrix

-1
n
Vel + Z(Ei?)i] . In other words,

i=1

-1
n
s e ~ fw [n+vs, Vs Z(ziz’)i] (13)

i=1

This is a known parametric distribution and thus can be sampled
using a Gibbs sampler.
In order to sample ¢ from its posterior density (¢|y, B, X) =

n
Hrr(EiB}i, B, X), consider simply the ith posterior kernel den-
i=1
sity of &;, due to an assumption of no spatial correlation across
segments.

S
wEil3i. xi, B Z) = Cips @i | 2)] [ exp(—ninie

s=1
= CinPElyi, xi, B, X), (14)

where A;; = exp(x},Bs + €is). Draws from this conditional den-
sity can be obtained by developing an M—H algorithm, as
described below.

Following Chib et al. (1998), the multivariate
t distribution is used as the proposal density. Let
& = argmax[In 7”(; |yi, xi, B, )] and Vi, = (—Hg,)~!

&

be the inverse of the Hessian of In 7P(g; |y;, x;, B, X) at the
mode gi. The mode ?,- and variance—covariance matrix Vi,
can be obtained using the Newton—Raphson algorithm with
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the gradient vector g, = —X7'& + [y; —exp (xiB + &)]

and Hessian matrix H, = . diag[exp(x; 8 + &)1,

X;l 0 e 0 ﬂ]
0 x, ... O B2

where x; = and 8 = . Then, the
0 0 ... X Bs

proposal density is given by fr(; |§,~, Ve;, Ve ), a multivariate-¢
distribution with v, degrees of freedom (where v, can be used
as a tuning parameter in the M—H algorithms to make sure that
the acceptance rate’ lies between 20 and 45%%). A proposal
value E;* is drawn from fr(g; |éi, Ve, » Ve ), and the chain moves
to € from the current point €; with probability.

alEi, & Vi, xi, B, 2)

7-[[7(78'?‘ |5)l'7 Xi, ﬂ’ Z‘)J“T‘(gl |§i7 V€,‘7 vé‘)
7P Ei Vi, Xis B, 2) fr(EF |&i, Ve, ve)’

= min

1 (15)

If a(é;, € |y, xi, B, X) is greater than U (where U is uni-
formly distributed on [0,1]), the proposal value €] is accepted;
otherwise, the current value &; is kept as the new draw for the
Markov chain.

P (BE |y, X, &, Bs. ) fr(Bs | Bs. Vi, vp)

mass function of y.s<=(y1s, ¥2s, - - -, ¥ns) given Bs, X and .5 = (g5,
€25, - - -» Ens). Note that the B5’s (se{1,2,...,5}) are assumed to
be independent of one another.

A scheme similar to the one sampling &; is developed here
to sample B;. The multivariate-f once again serves as the pro-
posal density. Let BS = argmax[In 7P (B |y.s, X, €.5, B—s, X)]
be the mode, and Vg, = (_Hﬁs)_l the inverse of the Hes-
sian of In7a”(Bs|y,X,€, B—s, X) at the mode Bs. The mode
Bs and variance—covariance matrix Vg, can be obtained using
the Newton—Raphson algorithm with the gradient vector gg =

n
— Vi (Bs — Bos) + Y _Lyis — exp(xj,Bs + £is)]xis and Hessian
i=1

n
matrix Hpg, = _Vﬂ_o: — Z[exp(xgsﬁs + &ig)]xisx},. Then, the
i=1
proposal density is given by f7(Bs |Bs Vg, vg), a multivariate-
distribution with vg degrees of freedom (where vg can be used
as a tuning parameter in the M—H algorithms to make sure that
the acceptance rate lies between 20 and 45%). A proposal value
B is drawn from fr(B;s |/§x, Vg,, vg), and the chain moves to g}
from the current point Sy with probability:

a(Bs, B; 1y, X, &, B—s, X)) min {

The samples of B, conditional on g, y, X, X', and, S_; (where

B—s=[B1, B2, - - -» Bs—15 Bs+1s - - -» Bs]) are drawn from the pos-
terior distribution, which is proportional to:

T[p(,BS |ys X’ 89 2)
S
=B 1y, X85, 2) [[ 7B |v.j, X6, %)
J=1.js

= Cfsnp(ﬁs [y.ss X, 85, X) ¢kx(,3s |:30S7 Vﬂos)

T T expl— exp(x/sBs + eis)llexp(x; s

i=1

+ £i) ] o bk, (Bs | Bos, Vo, )P(Vs |Bss £.5) (16)
s
where C_; = H TP (B; |y.j, X,¢e.j, X) (which does not
J=1j#s

involve B, and thus serves as a constant), and p(y.s | X, Bs, &.5) =
n
H exp[— exp(x/,B + €is)l[exp(x}, + €is)]’" is the probability

i=1

7 The acceptance rate is the fraction of proposed samples that is accepted. If
the proposal steps are too small, the chain will move around the space slowly
and thus converge slowly on the true posterior density. If the proposal steps are
too large, the acceptance rate will be very low because the proposals are likely
to land in regions of much lower probability density.

8 Chib and Greenberg (1995) believe that an acceptance rate of 23% is desir-
able as the number of dimensions approaches infinity, and an acceptance rate of
45 percent is desirable for a one-dimensional random-walk chain.

P (Bs |y, X. &, B—s. T) fr(BE |Bs. Vg, vp)

a7

Ifa(Bs, By |y, X, €, B—s, X)is greater than U (where U is uni-
formly distributed on [0,1]), the proposal value 8} is accepted;
otherwise, the current value B is kept as the new draws for the
Markov chain.

4. Data description

The crash data sets used here were collected from Wash-
ington State through the Highway Safety Information System
(HSIS). In order to examine traffic crashes patterns on rural
two-lane roadways, this research considers crashes in the Puget
Sound region. A random sample of 60% of all rural two-lane
road segments in this region was used for model estimation. A
total of 7773 rural two-lane highway segments (with an average
segment length of 0.0655 miles” and a total of 510 miles) are
available for analysis. This sample contains 16 fatal crashes, 50
disabling-injury crashes, 180 non-disabling-injury crashes, 175
possible-injury crashes and 532 property-damage-only (PDO).
Table 1 reports summary statistics for the dependent and inde-
pendent variables employed in the analysis. A variety of readily
available variables are controlled for in the model, including
design features, traffic intensity, location information, and road-
way functional classification.

9 It is quite possible that very short segments do not faithfully represent the
actual location of crashes, since police officers may locate crashes only to the
nearest tenth of a mile. Cluster analysis, wherein similar segments/conditions are
merged (providing higher crash counts) can address some of this bias in report-
ing. Ma and Kockelman (2006a,b) conducted such an analysis with Washington
State data.
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tinct univariate Poisson models (using the method of maximum
likelihood estimation (MLE)). The starting values for X' are

Table 2

PDO crash frequency MVPLN model results

Table 1
Summary statistics of variables
Variable name Mean Standard deviation Min. Max.
Dependent variables
Number of fatal crashes 0.002058 .04533 0 1
Number of disabling injury crashes 0.006433 .07995 0 1
Number of non-disabling injury crashes 0.02316 1587 0 3
Number of possible injury crashes 0.02251 2045 0 11
Number of PDO crashes 0.06844 3345 0 12
Independent variables
Segment length (miles) 0.0655 .08689 .00 1.92
Horizontal curve length (ft) 247.6 4754 .00 4715
Degree of curvature (°/100 ft) 2.337 5.462 .00 100.5
Vertical curve length (ft) 302.7 376.0 .00 3200
Vertical grade (%) 1.805 1.991 .00 16.13
Average shoulder width on each side (ft) 2.087 1.298 .00 16.50
Surface width (ft)* 24.00 4.461 16.0 73.0
Posted speed limit (miles/h) 49.62 8.163 25.0 60.0
Posted speed limit squared (miles?/h?) 2528 715.5 625 3600
Average annual daily traffic (AADT) 3757 2729 254 28,624
Indicator for principal arterial: 1 =yes, 0 =otherwise 0.48 0.499 0 1
Indicator for minor arterial: 1 =yes, 0 =otherwise 0.28 0.451 0 1
Indicator for collector: 1 =yes, 0=otherwise 0.24 0.430 0 1
Indicator for level terrain: 1 =yes, 0 =otherwise 0.36 0.482 0 1
Indicator for rolling terrain: 1 =yes, 0 =otherwise 0.60 0.491 0 1
Indicator for mountainous terrain: 1 =yes, 0= otherwise 0.04 0.194 0 1
Vehicle miles traveled (VMT) in 2002 88,106 142,830 .00 2,679,710
The natural logarithm of VMT 10.45 2.737 —22.35 14.80
Number of observations 7773
2 Surface width does not include the width of shoulders (paved or unpaved).
5. Model estimation and results 10 0 0 O
o 01000
5.1. Model estimation . .
Is=|0 0 1 O O/.TheMLE estimates for the five uni-
The MVPLN regression model was estimated using a 00010
Bayesian approach. The starting values for 8 came from dis- 0O 0 0 0 1

variate Poisson models can be found in Ma (2006). A Gibbs
sampler and two M—H algorithms were coded in the R language

Variable definition Mean Standard error The 95% (2.5-97.5%) sample-based credible sets
Constant —12.64 0.4562 —13.38 —11.88
Horizontal curve length (ft) 2.09E—05 1.35E—05 —1.31E—06 4.27E—-05
Degree of curvature (°/100 ft) 0.1241 6.31E-03 0.1136 0.1344
Vertical curve length (ft) —2.05E—-04 1.97E—-05 —2.37E—-04 —1.73E—-04
Vertical grade (%) 0.1377 0.01441 0.1134 0.1609
Average shoulder width (ft) —0.01125 3.54E-03 —0.01694 —5.28E—03
Surface width (ft) —0.01520 5.25E—04 —0.01607 —0.01434
Posted speed limit (miles/h) 0.01493 2.89E-03 0.01014 0.01972
Posted speed limit squared (miles?/h?) —1.53E—04 8.64E—05 —2.97E—04 —1.33E-05
Average annual daily traffic (AADT) 4.79E—-05 2.03E—-06 4.46E—-05 5.13E—-05
Indicator for minor arterial: 1 =yes, 0 =otherwise —0.01112 0.01631 —0.03759 0.01568
Indicator for collector: 1 =yes, 0=otherwise —0.009441 0.01872 —0.04049 0.02080
Indicator for rolling terrain: 1 =yes, 0 =otherwise 0.03929 0.01439 0.01526 0.06240
Indicator for mountainous terrain: 1 =yes, 0 =otherwise 0.6120 0.04687 0.5355 0.6888
Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5-97.5) sample-based credible sets.
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Table 3

Possible-injury crash frequency MVPLN model results

Variable definition Mean Standard error. The 95% (2.5-97.5%) sample-based credible sets
Constant —15.85 0.8120 —17.22 —14.53
Horizontal curve length (ft) 2.90E—05 2.37E—-05 —8.46E—06 6.90E—05
Degree of curvature (°/100ft) 0.1031 7.09E-03 0.09136 0.1147
Vertical curve length (ft) —2.97E-04 1.30E-05 —3.18E—-04 —2.76E—04
Vertical grade (%) 0.1616 9.20E-03 0.1465 0.1766
Average shoulder width (ft) —8.71E-03 9.48E—04 —0.01027 —7.17E-03
Surface width (ft) —0.01258 7.16E—04 —0.01371 —0.01139
Posted speed limit (miles/h) 0.03116 5.25E—03 0.02238 0.03970
Posted speed limit squared (miles?/h?) —1.40E—-05 1.57E—05 —4.02E—-05 1.19E—-05
Average annual daily traffic (AADT) 1.08E—04 3.28E—-06 1.03E—-04 1.13E—-04
Indicator for minor arterial: 1 =yes, 0 =otherwise 0.2257 0.02809 0.1799 0.2729
Indicator for collector: 1 =yes, 0=otherwise 0.4971 0.03114 0.4448 0.5478
Indicator for rolling terrain: 1 =yes, 0 =otherwise —0.2344 0.02530 —0.2756 —0.1934
Indicator for mountainous terrain: 1 =yes, 0 =otherwise —0.3552 0.1301 —0.5677 —0.1452
Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5-97.5) sample-based credible sets.

Table 4

Non-disabling injury crash frequency MVPLN model results

Variable definition Mean Standard error The 95% (2.5-97.5%) sample-based credible sets
Constant —15.37 0.9321 —16.89 —13.81
Horizontal curve length (ft) —2.01E-05 2.41E-06 —2.41E-05 —1.61E—-05
Degree of curvature (°/100 ft) 0.1576 6.04E—03 0.1477 0.1676
Vertical curve length (ft) —2.04E—-04 1.12E-05 —2.22E-04 —1.85E—-04
Vertical grade (%) 0.1850 0.01532 0.1602 0.2110
Average shoulder width (ft) —4.69E—03 9.17E—04 —6.22E—-03 —3.22E-03
Surface width (ft) —0.01079 1.25E—03 —0.01287 —8.72E—03
Posted speed limit (miles/h) 0.01335 1.73E-03 0.01051 0.01621
Posted speed limit squared (miles?/h?) —2.30E—04 1.56E—04 —4.82E—-04 3.38E—-05
Average annual daily traffic (AADT) 2.37E—06 3.55E-06 —3.46E—06 8.24E—06
Indicator for minor arterial: 1 =yes, 0 =otherwise 0.2489 0.02867 0.2025 0.2963
Indicator for collector: 1 =yes, 0=otherwise 0.4896 0.03679 0.4292 0.5508
Indicator for rolling terrain: 1 =yes, 0 =otherwise 0.1341 0.02343 0.09553 0.1733
Indicator for mountainous terrain: 1 =yes, 0 =otherwise —0.1685 0.1100 —0.3428 0.01523
Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5-97.5) sample-based credible sets.

(an open-source statistical computing environment described at
http://www.r-project.org/)'?. The prior distributions for the esti-
mation are defined by the hyperparameters vy =10, V5 =1,
Bos=(0, 0, ..., 0), and Vgos = 100 x I14. The Gibbs sampler
was implemented to obtain M = 8000 draws for X'. The two M-H
algorithms were implemented to obtain M = 8000 draws for each
of the 5 x 14=70 B’s and each of the 7773 x 5=38,865 ¢&’s,
respectively. The initial 1000 draws were discarded as “burn-
ins.” An adequate burn-in period eliminates the influence of the
starting values. To help ensure chain convergence, the Gibbs
sampler and the two M-H algorithms were implemented using
two sets of starting values'' and both converged at the same
posterior distribution of parameters. Convergence was obtained
fairly quickly, under a variety of assumed priors and initial val-
ues. And standard diagnostic methods, as proposed by various

10 The source code can be found in Ma (2006).
11 Zeros were used as the starting values for § in the second chain.

researchers (including Gelman et al., 2004), were used, such as
checking for autocorrelations and cross-correlations. Estimation
results are presented in Tables 2—-6.

Based on the posterior density of X, positive correlations
between crash counts at different levels of severity within the
segment do appear to exist, in a statistically significant way.
The univariate models are a special case of the MVPLN, with
off-diagonal elements of X equal to zero. Given the MVPLN pre-
dictions’ added flexibility to represent such pattern, itis expected
that they offer somewhat better predictions.

5.2. Interpretation of results

The following discussion of results emphasizes disabling and
fatal injuries (Tables 5 and 6), since these arguably are of great-
est concern to agencies and policymakers. Moreover, the data
on such outcomes are more likely to be reported and more reli-
ably recorded than that for other crash outcomes (Blincoe et al.,
2002). Tables 2—4 provide crash count model estimates for the
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Table 5
Disabling injury crash frequency MVPLN model results
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Variable definition Mean Standard error The 95% (2.5-97.5%) sample-based credible sets
Constant —16.73 2.182 —-20.37 —13.12
Horizontal curve length (ft) 6.49E—05 3.97E-05 3.70E—-07 1.30E—04
Degree of curvature (°/100 ft) 0.02029 6.64E-03 9.62E-03 0.03097
Vertical curve length (ft) —3.69E—04 3.63E—05 —4.28E—04 —3.10E—-04
Vertical grade (%) 0.1431 0.01101 0.1255 0.1607
Average shoulder width (ft) 6.27E—03 0.01656 —0.02102 0.03334
Surface width (ft) —9.85E-03 1.47E—-03 —0.01226 —7.41E-03
Posted speed limit (miles/h) 0.01040 1.81E—03 7.42E—03 0.01344
Posted speed limit squared (miles/h?) 3.48E—04 3.22E—04 —1.94E—-04 8.64E—04
Average annual daily traffic (AADT) 5.34E—-04 5.78E—05 4.38E—04 6.30E—04
Indicator for minor arterial: 1 =yes, 0 =otherwise 0.3470 0.04676 0.2700 0.4243
Indicator for collector: 1 =yes, 0=otherwise 0.4106 0.05675 0.3171 0.5033
Indicator for rolling terrain: 1 =yes, 0 =otherwise 0.2814 0.04212 0.2133 0.3498
Indicator for mountainous terrain: 1 =yes, 0 =otherwise 167.6 115.3 —24.93 355.2
Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5-97.5) sample-based credible sets.

other three severity levels. The signs of most coefficients are
consistent throughout the models, indicating robust directions
of effect for most control variables.

Parameter estimates shown in Tables 2—6 suggest that road-
way design plays an important role in predicting crash counts.
For example, holding all other factors fixed, more severe injury
crashes are expected on sharper horizontal curves, while wider
shoulders tend to reduce rates of less severe crashes (perhaps
by offering added maneuverability space for crash avoidance).
Based on an average road segment’s attributes and the MVPLN
model’s average parameter estimates, Table 7 provides estimates
of percentage changes in crash rates as a function of various
design details. For example, a 5-ft increase in (average) right
shoulder width (from 2 to 7 ft) is predicted to result in 7.04%
fewer crashes (total) per 100 million VMT. A 26.6% higher
average annual daily traffic level (rising from 3757 to 4757 vehi-
cles) is predicted to increase total crash count by 16.4%—while
reducing the total crash rate by 5.51%. In this way, the
MVPLN model results offer statistically (and practically) sig-

Table 6
Fatal crash frequency MVPLN model results

nificant insights into crash counts’ dependence on roadway
design.

The magnitudes of the parameter estimates for the MVPLN
specification are not directly comparable to those of univari-
ate Poisson models (shown in Ma, 2006) or those of univariate
negative binomial (UVNB) models (also shown in Ma, 2006).
The reason for this is that the MVPLN model accounts for
correlations across crash counts (by severity), and is there-
fore somewhat different from the univariate cases. However,
a comparison of parameter signs shows that sharper curves are
associated with more fatal crashes in all three models (MVPLN,
UVP, and UVNB). The rest of control variables are not statisti-
cally significant in both the UVP and UVNB models; however,
some of these control variables remain showing a statistically
significant effect on fatal crash occurrence in the MVPLN model.
For example, speed limit is not statistically significant in the uni-
variate models but is expected to increase fatal crash rates in the
MVPLN model. Vertical curve length and segment grade show
the same pattern of effects on disabling-injury crashes in all

Variable definition Mean Standard error The 95% (2.5-97.5%) sample-based credible sets
Constant —24.46 6.780 —-35.61 —13.63
Horizontal curve length (ft) —3.56E—05 5.67E—-06 —4.47E-05 —2.63E-05
Degree of curvature (°/100ft) 0.02080 1.23E-03 0.01868 0.02274
Vertical curve length (ft) 3.67E—05 1.07E—05 1.93E—05 5.39E—05
Vertical grade (%) —0.05849 0.02737 —0.1032 —0.01380
Average shoulder width (ft) 0.01766 0.03147 —0.03503 0.06981
Surface width (ft) 0.05338 0.02102 0.01937 0.08909
Posted speed limit (miles/h) 0.01463 2.27E—03 0.01073 0.01835
Posted speed limit squared (miles/h?) 1.78E—04 9.08E—04 —1.34E-03 1.64E—-03
Average annual daily traffic (AADT) 1.64E—05 1.30E—-05 —4.62E—06 3.83E-05
Indicator for minor arterial: 1 =yes, 0 =otherwise 0.1532 0.09024 3.70E-03 0.3053
Indicator for collector: 1 =yes, 0=otherwise 0.4176 0.1206 0.2263 0.6169
Indicator for rolling terrain: 1 =yes, 0 =otherwise —0.1714 0.07712 —0.2997 —0.04648
Indicator for mountainous terrain: 1=yes, 0 =otherwise 1.801 0.2251 1.436 2.172
Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5-97.5) sample-based credible sets.
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Table 7

Expected percentage changes in crash rates corresponding to changes in variables

Variables Averages Changes in variable Percentage change in crash rates (per 100 million VMT)
Fatal (%) Disabling (%) Non-disabling (%) Possible (%) PDO (%) Total (%)

CURV_LGT 248 (ft) +100 —0.36 0.65 —0.20 - - 0.30
DEG_CURV 2.3 (°/1001t) +2 4.08 3.98 27.04 18.63 21.98 18.58
VCUR_LGT 303 (ft) +100 0.37 —3.76 —2.06 —3.01 —2.08 —2.52
PCT_GRAD 1.805 +2 —12.41 24.88 30.93 27.62 24.07 24.86
SHLDWID 2.1 (f) +5 - - —5.54 —6.49 —7.89 —7.04
SURF_WID 24 (ft) +5 —12.52 —58.65 —5.36 —6.49 4.76 0.04
SPD_LIMT 50 (mile/h) +10 28.97 38.56 —12.72 25.64 —1.95 12.99
AADT 3757 +1000 - 41.37 - 10.24 4.68 16.42
Table 8

Correlation-coefficients of &;

Fatal Disabling Non-dsabling Possible PDO

injury
Fatal 1 0.04207 0.01777 0.02191 0.02718
Disabling 1 0.05061 0.06100 0.4328
Non-dsabling 1 0.08071 0.1304
Possible injury 1 0.3552
PDO 1

three models. For example, long vertical curves are predicted to
reduce disabling-injury crashes, but steeper segments are asso-
ciated more disabling-injury crashes. The coefficient signs for
remaining control variables are not in agreement across all three
models, indicating that specification choice is important to a
proper understanding of crash count relationships.

Based on the description of the correlation effects earlier in
the paper, we should expect the MVPLN specification to yield
a superior crash prediction model because the crash counts by
severity on the same segment of roadway are found to be corre-
lated with one another as shown in Table 8. Note that this is not
a theoretical point, but rather an empirical one: in other words,
where potential correlation exists, it should be modeled. Like the
MVNB approach, our approach allows for overdispersion. The
correlations may be caused by omitted variables (such as pave-
ment quality, sight distance, driveway density, and surrounding
land use), which can influence crash occurrence at all levels of
severity. Essentially, higher crash rates of one type are associated
with higher crash rates of other types. Negative correlations are
not likely in models of crash prediction since crash likelihood
for all crash types is likely to rise due to the same deficiencies
in roadway design, or other unobserved factors.

Table 9
Comparisons of crash predictions from univariate and multivariate models
Observed PDO Possible Non-disabling Disabling Fatal
981 331 287 83 23
UvpP
Prediction 1050 432.6 384.3 120.8 30.44
Difference 69.24 101.6 97.32 37.77 7.444
Percentage difference (%) 7.06 30.70 33.91 45.51 32.37
UVNB
Prediction 1039 396.5 3454 104.8 29.91
Difference 58 65.5 58.4 21.8 6.91
Percentage difference (%) 591 19.79 20.35 26.27 30.04
MVPLNI*?
Prediction 1013 358.2 310.1 96.8 27.13
Difference 32 27.2 23.1 13.8 4.13
Percentage difference (%) 3.26 8.22 8.05 16.63 17.96
MVPLN2P
Prediction 1005 348.3 306.4 97.17 26.52
Difference 24 17.3 19.4 14.17 3.52
Percentage difference (%) 2.45 5.23 6.76 17.07 15.30

Note: A total of 13,050 rural two-lane road segments in the Puget Sound region were used for model prediction.

2 The MVPLNI1 predictions were computed as follows: (1) 1000 samples of all severity-specific parameters were taken from a multivariate normal distribution
with the posterior distribution’s mean and correlation correlations; (2) 1000 samples of nuisance parameters (error terms) were drawn from a multivariate normal
with zero and correlation coefficients shown in Table 8; (3) expected crash counts for each segment were calculated, for all 1000 samples.

® The MVPLN2 predictions were obtained as follows: (1) 7000 samples of nuisance parameters (error terms) were drawn from a multivariate normal with zero
mean and correlation coefficients shown in Table 8; (2) 7000 expected crash counts were computed for all segments using these 7000 draws along with the 7000

draws from the MCMC simulation.
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In addition, out-of-sample predictions from both univariate
and multivariate models are compared for the different groups.
Table 9 suggests that the MVPLN model with MCMC draws
predicts better than the univariate models (UVP and UVNB).
This is because the MVPLN model addresses the issue of unob-
served heterogeneity and allows for correlations among crash
counts at all levels of severity.

6. Conclusions

Roadway safety is a major concern for the general
public—and its transport agencies. Roadway crashes claim
many lives and cause substantial economic losses each year.
The situation is of particular interest on rural two-lane road-
ways, which experience significantly higher fatality rates than
urban roads. There have been numerous efforts devoted to inves-
tigating crash occurrence as related to roadway design features,
environmental conditions and traffic levels. However, almost all
such research has relied on univariate count models; that is,
traffic crash counts at different levels of severity have been esti-
mated separately. The widely used univariate count data models
neglect the interdependence of crash counts at different levels
of severity for a specific segment of roadway.

This research simultaneously models correlated crash counts
at different levels of severity using an MVPLN regression spec-
ification, which allows for a rather general correlation structure
as well as overdispersion. With recent advances in crash model-
ing and Bayesian statistics, parameter estimation is achieved
within the Bayesian paradigm, using a Gibbs Sampler and
Metropolis—Hastings algorithms.

Crash counts for over 7773 homogeneous segments of rural
two-lane Washington State roadways in the Puget Sound region
in 2002 were used to estimate the model. Thanks to MCMC
simulation techniques, the marginal posterior distributions of
all parameters of interest were obtained, and estimation results
from the MVPLN approach offered better predictions than those
from univariate Poisson and negative binomial models.

As anticipated, the results lend themselves to several recom-
mendations for highway safety treatments and design policies.
For example, adding shoulder width is predicted to be highly
cost-effective, in terms of the crash cost reductions over the long
run.

The current MVPLN specification assumes no spatial corre-
lation across roadway segments. Various unobserved variables
may play very similar roles in determining crash frequency on
adjacent roadway segments. The assumption of no spatial corre-
lation is actually too strong in this case. These uncontrolled (or
simply unobserved) factors may also render significant spatial
correlations over time (see, e.g., Meliker et al., 2004; Miaou et
al., 2003; Pawlovich et al., 1998.) Additionally, the high level
of correlation between PDO and disabling crashes may indicate
some ambiguity or weakness in severity classification schemes,
if one believes that unobserved heterogeneity in omitted vari-
ables should generate significant correlation (e.g., in data sets
with relatively few control variables available).

The framework of this research is established in its para-
metric assumptions. Parametric methods can be implemented

using assumptions of underlying distributions and relationships.
Misspecification of the distribution may lead to serious errors
in subsequent data analysis. Semi-parametric and nonparamet-
ric regression analysis relaxes these assumptions'? (see, e.g.,
Gurmu et al., 1999; Wooldridge, 1999; Alfo and Trovato, 2004).
For example, Gurmu et al. (1999) developed a semiparamet-
ric approach to investigate overdispersed count data using a
Laguerre series expansion of an unknown density function for
unobserved heterogeneity.

The cost of relaxing such assumption requires more com-
putation and, in some instances, a more difficult-to-understand
result. The benefits of nonparametric methods include a poten-
tially more accurate estimate of the regression function and
often “exact” probability statements, regardless of the shape of
the population distribution from which the random sample was
drawn (Damien, 2005).

The MVPLN model estimated here incorporates the safety
effects of several roadway design and traffic features of inter-
est to traffic and transportation engineers. However, several
features of interest that are not available have been omitted
from the model, including, for example, driveway density and
sight distance. In addition, the model generally treats the effects
of individual geometric design features as independent of one
another and ignores potential interactions among them. Such
interactions may exist (such as combinations of horizontal and
vertical curvature on the same segment), and these should be
examined in the future endeavors of this type.
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