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bstract

Numerous efforts have been devoted to investigating crash occurrence as related to roadway design features, environmental factors and traffic
onditions. However, most of the research has relied on univariate count models; that is, traffic crash counts at different levels of severity are
stimated separately, which may neglect shared information in unobserved error terms, reduce efficiency in parameter estimates, and lead to
otential biases in sample databases. This paper offers a multivariate Poisson-lognormal (MVPLN) specification that simultaneously models crash
ounts by injury severity. The MVPLN specification allows for a more general correlation structure as well as overdispersion. This approach
ddresses several questions that are difficult to answer when estimating crash counts separately. Thanks to recent advances in crash modeling
nd Bayesian statistics, parameter estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the Metropolis–Hastings (M–H)
lgorithms for crashes on Washington State rural two-lane highways. Estimation results from the MVPLN approach show statistically significant

orrelations between crash counts at different levels of injury severity. The non-zero diagonal elements suggest overdispersion in crash counts at all
evels of severity. The results lend themselves to several recommendations for highway safety treatments and design policies. For example, wide
anes and shoulders are key for reducing crash frequencies, as are longer vertical curves.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Roadway safety is a major concern for the general public
nd public agencies. Roadway crashes claim many lives and
ause substantial economic losses each year. In the U.S. traffic
rashes bring about more loss of human life (as measured in
uman-years) than almost any other cause—falling behind only
ancer and heart disease (NHTSA, 2005). The situation is of
articular interest on rural two-lane roadways, which experience
ignificantly higher fatality rates than urban roads. The annual

ost of traffic crashes is estimated to be $231 billion, or $820
er capita in 2000 (Blincoe et al., 2002). These costs do not
nclude the cost of delays imposed on other travelers, which
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lso are significant, particularly when crashes occur on busy
oadways. Schrank and Lomax (2002) estimate that over half of
ll traffic delays are due to non-recurring events, such as crashes,
osting on the order of $1000 per peak-period driver per year,
articularly in urban areas. Thus, while vehicle and roadway
esign are improving, and growing congestion may be reducing
mpact speeds, crashes are becoming more critical in many ways,
articularly in societies that continue to motorize.

Given the importance of roadway safety, there has been con-
iderable crash prediction research (see, e.g., Hauer, 1986, 1997,
001; Abdel-Aty and Radwan, 2000; Ulfarsson and Shankar,
003; Kweon and Kockelman, 2005; Lord and Persaud, 2000;
ord et al., 2005; Ma and Kockelman, 2006a,b; Karlaftis and
arko, 1998; Shankar et al., 1998; Khattak et al., 2006). Crash

requencies are commonly collected by severity on relatively

omogenous roadway segments, supporting the development of
rash count models. However, such research has relied on uni-
ariate count models; that is, traffic crash counts at different
evels of severity are estimated separately. The widely used uni-
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ariate count data models ignore the following issues: interde-
endence due to latent factors is likely to exist across crash rates
t different levels of severity for a specific segment of roadway.
ecently, Ma and Kockelman (2006a,b) applied a multivariate
oisson (MVP) specification to model crash counts at different

evels of severity simultaneously. However, this MVP specifica-
ion allows only for a common added Poisson error term, result-
ng in equal positive correlations across crash counts and a very
pecific data pattern where all counts are equally shifted. In addi-
ion, this MVP specification does not allow for overdispersion.

Using a multivariate Poisson-lognormal (MVPLN) specifi-
ation, as well as Bayesian estimation techniques, this work
odels correlated traffic crash counts simultaneously at differ-

nt levels of severity. The MVPLN specification allows for a
ore general correlation structure as well as overdispersion.
his approach addresses several questions that are difficult to
nswer by estimating them separately. With recent advances in
rash modeling and Bayesian statistics, parameter estimation
s done within the Bayesian paradigm, using a Gibbs Sampler
nd the Metropolis–Hastings (M–H) algorithms. The data come
rom Washington State rural two-lane highways in 2002, using
he Highway Safety Information System (HSIS) database. The
esults lend themselves to recommendations for highway safety
reatments and general design policies.

This paper is organized as follows: related research studies
re reviewed first. The model’s formulation and data sets are then
iscussed, followed by estimation results, concluding remarks,
nd future research directions.

. Literature review

Models of crash (or injury) counts can be classified into
wo major streams: (1) the conventional univariate Poisson
nd related models, such as the negative binomial (NB); (2)
otentially more realistic specifications, such as the MVP and
VPLN. The first stream has provided a means for investi-

ating associations between crash frequency and many crucial
actors, such as traffic volume, access density, posted speed limit
nd number of lanes (see, e.g., Miaou et al., 1993; Miaou and
um, 1993; Miaou, 1994, 1996, 2001; Fridstrøm et al., 1995;
ohansson, 1996; Vogt and Bared, 1998; Vogt, 1999; Balkin and
rd, 2001; Zegeer et al., 2002; Pernia et al., 2004). There also
as been considerable interest in models that allow for excessive
eros, such as zero-inflated Poisson (ZIP) and zero-inflated neg-
tive binomial (ZINB) regression approaches (see, e.g., Lord et
l., 2005; Shankar et al., 1997; Garber and Wu, 2001; Lee and
annering, 2002; Kumara and Chin, 2003; Miaou and Lord,

003; Rodriguez et al., 2003; Shankar et al., 2003; Noland and
uddus, 2004; Qin et al., 2004).
Due to computational and statistical advances, panel data

in which a cross-section of segments, intersections, etc. is
bserved over time) have become more amenable to rigor-
us analysis. In traffic crash analyses, there are a great many

nobserved explanatory variables that affect frequencies and
everities. Panel data can be used to deal with heterogene-
ty among individuals. To address the heterogeneity, many
ecent studies have used (univariate) panel count data models,
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m
e
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uch as random-effect negative binomial (RENB) and fixed-
ffect negative binomial (FENB) regression models (Kweon and
ockelman, 2005; Karlaftis and Rarko, 1998; Shankar et al.,
998; Chin and Quddus, 2003).

Such past research endeavors, however, have neglected the
ole of unobserved factors across different types of counts
e.g., the number of fatalities and the number of disabling
njuries). Recognizing the need for such considerations, Ladron
e Guevara and Washington (2004) investigated the simultane-
ty of fatality and injury crash outcomes. Bijleveld (2005) also
xamined the correlation structure between crash and injury
ounts. As expected, he found significant correlations. How-
ver, he did not control for any covariates. Multivariate models
of count data), like Ma and Kockelman’s MVP (2006a,b) or Li
t al’s MVZIP (1999), can help correct for this.

This work models correlated traffic crash counts simul-
aneously at different levels of severity using an MVPLN
pecification, allowing for a very general correlation structure
s well as overdispersion. Such specifications are challenging to
stimate. Karlis (2003) developed an EM algorithm for an MVP
odel, and Ma and Kockelman (2006a,b) used Gibbs sampling,

s well as Metropolis–Hastings algorithms, within an MCMC
imulation framework.

In recent years, Bayesian methods have found several appli-
ations in traffic crash analysis. Christiansen et al. (1992) and
acNab (2003) developed hierarchical Poisson models for crash

ounts and surveillance data. Miaou and Song (2005) developed
Bayesian multivariate spatial generalized linear mixed model

GLMM) to rank sites for safety improvements using Texas’
ounty-level crash data. And Liu et al. (2005) used a hierarchi-
al Bayesian framework to estimate ZIP regression models and
evelop safety performance functions (SPFs) for two-lane high-
ays. Pawlovich et al. (2006) employed a Bayesian approach

o assess impacts of road design measures on crash frequencies
nd rates. And Washington and Oh (2006) developed a Bayesian
ethodology for incorporating expert judgment in ranking coun-

ermeasure effectiveness under uncertainty.
Bayesian estimation methods generate a multivariate poste-

ior distribution across all parameters of interest, as opposed to
he traditional maximum likelihood estimation approach, which
mphasizes and offers only the modal values of parameters (and
elies on asymptotic properties to ascertain covariance).

This paper introduces an MVPLN approach to simultane-
usly model crash counts by injury severity. A Gibbs sampler
nd a Metropolis–Hastings (M–H) algorithm are used to esti-
ate the parameters of interest using Bayesian methods. For

omparison purposes, a series of independent (univariate) Pois-
on models for injury counts also are estimated.

. Model structure and estimation

.1. Mathematical formulation
Univariate Poisson regression models cannot account for
orrelations for different levels of severity; instead, one needs
ultivariate count data models. Crash counts (across severities)

ffectively require a multivariate model because the response
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s multi-dimensional. Moreover, in practice, omitted variables
such as driveway density and sight distances) may simultane-
usly affect all crash counts at different levels of severity for a
articular roadway segment, thus introducing correlation. Sev-
ral such models have been developed (see, e.g., Karlis, 2003;
rbous and Kerrich, 1951; King, 1989; Winkelmann, 2000;
ockelman, 2001; Tsionas, 2001). However, these specifications

upport only a common unobserved error term among counts.
Here, the focus is placed on the correlated counts within

ndividual roadway segments. Crash counts across roadway
egments are assumed to be independent (e.g., there is no spa-
ial correlation3). The variance-covariance matrix of y can be
xpressed as below:

ar(ynS×1) =

⎡
⎢⎢⎢⎢⎣

Ω1 0 · · · 0

0 Ω2 · · · 0
...

0 0 · · · Ωn

⎤
⎥⎥⎥⎥⎦ (1)

here

i =

⎡
⎢⎢⎢⎢⎣

ωi
11 ωi

12 · · · ωi
1S

ωi
21 ωi

22 · · · ωi
2S

...

ωi
S1 ωi

S2 · · · ωi
SS

⎤
⎥⎥⎥⎥⎦ for i = 1, 2, . . . , n (2)

Let �εi = (εi1, εi2, . . . εiS)′ denote the severity-level-specific
nobserved heterogeneity for roadway segment i [i = 1, 2,
. ., n, where n is the number of roadway segments], s denote
he severity level [s = 1, 2, . . ., S, where S is the number of
everity levels], and ε = (�ε′

1, �ε′
1, . . . , �ε′

n)′ denote the severity-
evel-specific unobserved heterogeneity across roadway
egments.

Assume that crash counts yis, conditioned on �εi, the severity-
evel-specific explanatory variables x′

is and their coefficients of
s, are independent Poisson distributed.

is |�εi, βs , xis ∼ Poisson(λis) (3)

Corr(yis, yil) = ξis[exp(σsl) − 1√
ξis exp(−σss/2) + ξ2

is[exp(σss) − 1]
√

ξi

= exp(σsl) − 1√
ξ−1
is exp(−σss/2) + exp(σss) − 1

√
ξ−1
il e
here λis = exp(x′
isβs + εis). The unobserved heterogeneity

erms �εi are assumed to be uncorrelated with the control (i.e.,
xplanatory) variables.

3 In reality, spatial correlation may exist and be significant. For example,
oning and design policies create correlation across sites within a city; access
anagement and other policies may simply shift the location of certain crash

ypes. The former leads to positive correlation, the latter to negative. Song et
l. (2006) developed Bayesian multivariate spatial models to investigate spatial
orrelations in four types of crashes using Texas’ county-level data.
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Let Λi = diag(�λi). This is an S × S matrix, where �λi =
λi1, λi2, . . . , λiS) and λis = ξisuis. Let �ui = exp(�εi), where
�i = (ui1, ui2, . . . , uiS)′. Conditioning on β and Σ, the mean
nd covariance matrix of the marginal distribution of �yi can be
btained as follows (Greene, 2003):

(�yi |β, xi, Σ ) = E�ui
(E�yi|�ui

(�yi |β, xi, �ui, Σ ))

= E�ui
(diag(�ξi)�ui) = �λi (4)

ar(�yi |β, xi, Σ ) = E�ui
(Var�yi|�ui

(�yi |β, xi, �ui, Σ ))

+ Var�ui
(E�yi|�ui

(�yi |β, xi, �ui, Σ ))

= E�ui
(diag(diag(�ξi)�ui)) + Var�ui

(diag(�ξi)�ui)

= Λi + Λi[exp(Σ) − 11′]Λi (5)

here β = (β1,β2,. . .,βS)′, xi = (xi1,xi2,. . .,xiS)′, �ξi =
ξi1, ξi2, . . . , ξiS)′, 11′ is an identity matrix of dimension

, and Σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ11 σ12 · · · σ1S

σ21 σ22 · · · σ2S

...
...

. . .
...

σS1 σS2 · · · σSS

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. The length of β is

= k1 + k2 + . . . + kS, where ks is the length of βs.
From Eq. (5), the variance–covariance terms, across counts,

an be obtained as follows:

ov(yis, yil) = 0 + λis[exp(σsl) − 1]λil

= ξis exp(σss/2)[exp(σsl) − 1]ξil exp(σll/2),

or s �= lVar(yis, yis) = λis + λis[exp(σss) − 1]λis (6)

The correlation between crash counts within segments is
btained as follows:

(σll/2) + ξ2
il[exp(σll) − 1]

σll/2) + exp(σll) − 1
(7)

here s �= l.
This correlation is unrestricted and can be positive or neg-

tive, depending on the sign of σsl, the (s,l) element of
. Moreover, this specification implies overdispersion4, since
ss > 0 for s = 1, 2, . . ., S.

Based on Eq. (3), the likelihood of observation i can be rep-
esented by the following equation:

(�yi |�εi, β, xi ) =
S∏

fPoisson(yis |λis ) (8)

s=1

here λis = ξisuis = exp(x′
isβs + εis).

4 Overdispersion refers to the situation in which variance is greater than mean.
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Unfortunately, the marginal distribution of the crash counts
i cannot be obtained by direct computation. Obtaining the
arginal distribution requires the evaluation of an S-variate inte-

ral of the Poisson distribution with respect to the distribution
f �εi,

(�yi

∣∣�λi, Σ ) =
∫ S∏

s=1

fPoisson(yis |xis, βs, εis )φS[�εi |0, Σ ]d�εi

(9)

here φs is the S-variate normal distribution. This S-dimensional
ntegral cannot be algebraically implemented in closed form for
rbitrary Σ.

.2. Estimating parameters via MCMC

In order to illuminate crash rate relationships, the MVPLN
odel’s unknown parameters need to be estimated. Chib et

l. (1998) showed how to estimate a posterior distribution of
nknown parameters for their models of panel count data5, and
lassmann and Tideman (2001) developed a Gibbs sampler to
stimate parameters in a univariate Poisson-lognormal model.

Based on Press (1982) and Gelman et al. (2004), the Wishart
istribution is commonly used as a conjugate prior for the
nverse of variance-covariance parameters. According to Press
1982), the Wishart and normal distributions are very helpful
or multivariate analysis. Suppose that the parameters (β, Σ)
ndependently have the prior distributions:

∼ φk(β0, Vβ0 ), Σ−1 ∼ fW (νΣ, VΣ) (10)

here β0 = (β01, β02, . . ., β0S)′, Vβ0 =
Vβ01 0 · · · 0

0 Vβ02 0 0
...

...
. . .

...

0 0 · · · Vβ0S

⎤
⎥⎥⎥⎥⎦, fW (.,.) is the Wishart distri-

ution with ν� degrees of freedom and scale matrix V�, and
0, V�0, �� and V� are known hyperparameters. The prior
istribution for βs can written as βs ∼ φks (β0s, Vβ0s

) for s = 1,
, . . ., S.

According to Bayes’ theorem (posterior ∝ prior ×
ikelihood), the posterior kernel can be written as follows:

(Σ, β |y, X ) ∝ φk(β0, Vβ0 )fW (νΣ, VΣ)
n∏

i=1∫ S∏
s=1

fPoisson(yis |xis, βs, εis )φS(�εi |0, Σ )d�εi
Using data augmentation6, the latent effects ε can be thought
f as (“nuisance”) parameters to be estimated. Therefore, the

5 Estimation of β in the panel count data models is similar to estimation of βs

n the MVPLN model.
6 Data augmentation views unobserved or latent variables as unknown param-
ters (to be estimated), in order to establish iterative algorithms.
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oint posterior density of Σ, ε, and β is written as follows:

π(Σ, ε, β |y, X ) ∝ φk(β0, Vβ0 )fW (νΣ, VΣ)

n∏
i=1

S∏
s=1

fPoisson(yis |xis, βs, εis )φS(�εi |0, Σ ) (11)

Thanks to this technique, the parameters can be “blocked”
s Σ, ε, and β, after which the joint posterior is simulated by
teratively sampling from the following three conditional dis-
ributions: πp[Σ−1|ε], πp[ε|y, X, β, Σ], and πp[β|y, X, ε, Σ],
here πp(|) denotes the posterior conditional density function.
The draws are sampled sequentially using the most recent

alues of the conditioning variables at each step.

.3. Gibbs sampler with embedded M–H algorithms

After manipulating the posterior equation (11), the posterior
f Σ−1 conditional on data and other parameters can be written
s

(Σ−1 |ε ) ∝ fW (Σ−1 |νΣ, VΣ )
n∏

i=1

φS(�εi|0, �) (12)

here fW denotes the Wishart density withν� degrees of freedom
nd scale matrix V�.

After manipulating Eq. (12), this density can be written as a
ishart kernel with degrees of freedom n + ν� and scale matrix

V−1
Σ +

n∑
i=1

(�εi�ε′)i

]−1

. In other words,

−1 |ε ∼ fW

⎛
⎝n + νΣ,

[
V−1

Σ +
n∑

i=1

(�εi�ε′)i

]−1
⎞
⎠ (13)

his is a known parametric distribution and thus can be sampled
sing a Gibbs sampler.

In order to sample ε from its posterior density π(ε|y, β, Σ) =
n

=1

π(�εi|�yi, β, Σ), consider simply the ith posterior kernel den-

ity of �εi, due to an assumption of no spatial correlation across
egments.

(�εi|�yi, xi, β, Σ) = CiφS(�εi |Σ )
S∏

s=1

exp(−λis)λ
yis
is

= Ciπ
p(�εi|�yi, xi, β, Σ), (14)

here λis = exp(x′
isβs + εis). Draws from this conditional den-

ity can be obtained by developing an M–H algorithm, as
escribed below.

Following Chib et al. (1998), the multivariate
distribution is used as the proposal density. Let

ˆ p −1

i = arg max

�εi

[ln π (�εi |�yi, xi, β, Σ )] and Vεi = (−Hεi )

e the inverse of the Hessian of ln πp(�εi |�yi, xi, β, Σ ) at the
ode �̂εi. The mode �̂εi and variance–covariance matrix Vεi

an be obtained using the Newton–Raphson algorithm with
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he gradient vector �gεi
= −Σ−1�εi + [�yi − exp

(
xiβ + �εi

)]
nd Hessian matrix Hεi = −Σ−1 − diag[exp(xiβ + �εi)],

here xi =

⎡
⎢⎢⎢⎢⎣

x′
i1 0 . . . 0

0 x′
i2 . . . 0

...
...

. . .
...

0 0 . . . x′
iS

⎤
⎥⎥⎥⎥⎦ and β =

⎡
⎢⎢⎢⎢⎣

β1

β2

...

βS

⎤
⎥⎥⎥⎥⎦. Then, the

roposal density is given by fT (�εi

∣∣ε̂i, Vεi , νε ), a multivariate-t
istribution with ν� degrees of freedom (where ν� can be used
s a tuning parameter in the M–H algorithms to make sure that
he acceptance rate7 lies between 20 and 45%8). A proposal
alue �ε∗

i is drawn from fT (�εi

∣∣ε̂i, Vεi , νε ), and the chain moves
o �ε∗

i from the current point �εi with probability.

α(�εi, �ε∗
i |�yi, xi, β, Σ )

= min

{
πp(�ε∗

i |�yi, xi, β, Σ )fT (�εi

∣∣ε̂i, Vεi , νε )

πp(�εi |�yi, xi, β, Σ )fT (�ε∗
i

∣∣ε̂i, Vεi , νε )
, 1

}
(15)

If α(�εi, �ε∗
i |�yi, xi, β, Σ ) is greater than U (where U is uni-

ormly distributed on [0,1]), the proposal value �ε∗
i is accepted;

therwise, the current value �εi is kept as the new draw for the
arkov chain.

The samples of βs, conditional on �, y, X, Σ, and, β−s (where
−s=[β1, β2, . . ., βs−1, βs+1, . . ., βs]) are drawn from the pos-

erior distribution, which is proportional to:

πp(βs |y, X, ε, Σ )

= πp(βs |y·s, X, ε·s, Σ )
S∏

j=1,j �=s

πp(βj

∣∣y·j, X, ε·j, Σ )

= C−sπ
p(βs |y·s, X, ε·s, Σ ) ∝ φks (βs

∣∣β0s, Vβ0s
)

n∏
i=1

exp[− exp(x′
isβs + εis)][exp(x′

isβs

+ εis)]
yis ∝ φks (βs

∣∣β0s, Vβ0s
)p(y·s |βs, ε·s ) (16)

here C−s =
S∏

j=1,j �=s

πp(βj

∣∣y·j, X, ε·j, Σ ) (which does not

α(βs, β
∗
s |y, X, ε, β−s, Σ ) min

{
πp(β∗

s |y, X,

πp(βs |y, X, ε
nvolve βs and thus serves as a constant), and p(y·s |X, βs, ε·s ) =
n

i=1

exp[− exp(x′
isβ + εis)][exp(x′

isβ + εis)]
yis is the probability

7 The acceptance rate is the fraction of proposed samples that is accepted. If
he proposal steps are too small, the chain will move around the space slowly
nd thus converge slowly on the true posterior density. If the proposal steps are
oo large, the acceptance rate will be very low because the proposals are likely
o land in regions of much lower probability density.

8 Chib and Greenberg (1995) believe that an acceptance rate of 23% is desir-
ble as the number of dimensions approaches infinity, and an acceptance rate of
5 percent is desirable for a one-dimensional random-walk chain.
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ass function of y·s=(y1s, y2s, . . ., yns) given βs, X and ε·s = (ε1s,
2s, . . ., εns). Note that the βs’s (s∈{1,2,. . .,S}) are assumed to
e independent of one another.

A scheme similar to the one sampling �εi is developed here
o sample βs. The multivariate-t once again serves as the pro-
osal density. Let β̂s = arg max

βs

[ln πp(βs |y·s, X, ε·s, β−s, Σ )]

e the mode, and Vβs = (−Hβs )
−1 the inverse of the Hes-

ian of ln πp(βs|y,X,�, β−s, Σ) at the mode β̂s. The mode
ˆ
s and variance–covariance matrix Vβs can be obtained using

he Newton–Raphson algorithm with the gradient vector �gβs =
V−1

β0s
(βs − β0s) +

n∑
i=1

[yis − exp(x′
isβs + εis)]xis and Hessian

atrix Hβs = −V−1
β0s

−
n∑

i=1

[exp(x′
isβs + �εis)]xisx

′
is. Then, the

roposal density is given by fT (βs

∣∣β̂s, Vβs , νβ ), a multivariate-t
istribution with �β degrees of freedom (where �β can be used
s a tuning parameter in the M–H algorithms to make sure that
he acceptance rate lies between 20 and 45%). A proposal value
∗
s is drawn from fT (βs

∣∣β̂s, Vβs , νβ ), and the chain moves to β∗
s

rom the current point βs with probability:

s, Σ )fT (βs

∣∣β̂s, Vβs , νβ )

s, Σ )fT (β∗
s

∣∣β̂s, Vβs , νβ )
, 1

}
(17)

If α(βs, β
∗
s |y, X, ε, β−s, Σ ) is greater than U (where U is uni-

ormly distributed on [0,1]), the proposal value β∗
s is accepted;

therwise, the current value βs is kept as the new draws for the
arkov chain.

. Data description

The crash data sets used here were collected from Wash-
ngton State through the Highway Safety Information System
HSIS). In order to examine traffic crashes patterns on rural
wo-lane roadways, this research considers crashes in the Puget
ound region. A random sample of 60% of all rural two-lane
oad segments in this region was used for model estimation. A
otal of 7773 rural two-lane highway segments (with an average
egment length of 0.0655 miles9 and a total of 510 miles) are
vailable for analysis. This sample contains 16 fatal crashes, 50
isabling-injury crashes, 180 non-disabling-injury crashes, 175
ossible-injury crashes and 532 property-damage-only (PDO).
able 1 reports summary statistics for the dependent and inde-
endent variables employed in the analysis. A variety of readily
vailable variables are controlled for in the model, including

esign features, traffic intensity, location information, and road-
ay functional classification.

9 It is quite possible that very short segments do not faithfully represent the
ctual location of crashes, since police officers may locate crashes only to the
earest tenth of a mile. Cluster analysis, wherein similar segments/conditions are
erged (providing higher crash counts) can address some of this bias in report-

ng. Ma and Kockelman (2006a,b) conducted such an analysis with Washington
tate data.
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Table 1
Summary statistics of variables

Variable name Mean Standard deviation Min. Max.

Dependent variables
Number of fatal crashes 0.002058 .04533 0 1
Number of disabling injury crashes 0.006433 .07995 0 1
Number of non-disabling injury crashes 0.02316 .1587 0 3
Number of possible injury crashes 0.02251 .2045 0 11
Number of PDO crashes 0.06844 .3345 0 12

Independent variables
Segment length (miles) 0.0655 .08689 .00 1.92
Horizontal curve length (ft) 247.6 475.4 .00 4715
Degree of curvature (◦/100 ft) 2.337 5.462 .00 100.5
Vertical curve length (ft) 302.7 376.0 .00 3200
Vertical grade (%) 1.805 1.991 .00 16.13
Average shoulder width on each side (ft) 2.087 1.298 .00 16.50
Surface width (ft)a 24.00 4.461 16.0 73.0
Posted speed limit (miles/h) 49.62 8.163 25.0 60.0
Posted speed limit squared (miles2/h2) 2528 715.5 625 3600
Average annual daily traffic (AADT) 3757 2729 254 28,624
Indicator for principal arterial: 1 = yes, 0 = otherwise 0.48 0.499 0 1
Indicator for minor arterial: 1 = yes, 0 = otherwise 0.28 0.451 0 1
Indicator for collector: 1 = yes, 0 = otherwise 0.24 0.430 0 1
Indicator for level terrain: 1 = yes, 0 = otherwise 0.36 0.482 0 1
Indicator for rolling terrain: 1 = yes, 0 = otherwise 0.60 0.491 0 1
Indicator for mountainous terrain: 1 = yes, 0 = otherwise 0.04 0.194 0 1
Vehicle miles traveled (VMT) in 2002 88,106 142,830 .00 2,679,710
The natural logarithm of VMT 10.45 2.737 −22.35 14.80
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a Surface width does not include the width of shoulders (paved or unpaved).

. Model estimation and results

.1. Model estimation

The MVPLN regression model was estimated using a

ayesian approach. The starting values for β came from dis-

inct univariate Poisson models (using the method of maximum
ikelihood estimation (MLE)). The starting values for Σ are

v
s

able 2
DO crash frequency MVPLN model results

ariable definition Mean St

onstant −12.64 0.
orizontal curve length (ft) 2.09E−05 1.
egree of curvature (◦/100 ft) 0.1241 6.
ertical curve length (ft) −2.05E−04 1.
ertical grade (%) 0.1377 0.
verage shoulder width (ft) −0.01125 3.
urface width (ft) −0.01520 5.
osted speed limit (miles/h) 0.01493 2.
osted speed limit squared (miles2/h2) −1.53E−04 8.
verage annual daily traffic (AADT) 4.79E−05 2.

ndicator for minor arterial: 1 = yes, 0 = otherwise −0.01112 0.
ndicator for collector: 1 = yes, 0 = otherwise −0.009441 0.
ndicator for rolling terrain: 1 = yes, 0 = otherwise 0.03929 0.
ndicator for mountainous terrain: 1 = yes, 0 = otherwise 0.6120 0.

umber of observations

ote: Italics are used for parameters that do not differ from zero in a statistically sign
7773

5 =

⎡
⎢⎢⎢⎢⎢⎢

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥. The MLE estimates for the five uni-
0 0 0 0 1
ariate Poisson models can be found in Ma (2006). A Gibbs
ampler and two M–H algorithms were coded in the R language

andard error The 95% (2.5–97.5%) sample-based credible sets

4562 −13.38 −11.88
35E−05 −1.31E−06 4.27E−05
31E-03 0.1136 0.1344
97E−05 −2.37E−04 −1.73E−04
01441 0.1134 0.1609
54E−03 −0.01694 −5.28E−03
25E−04 −0.01607 −0.01434
89E-03 0.01014 0.01972
64E−05 −2.97E−04 −1.33E−05
03E−06 4.46E−05 5.13E−05
01631 −0.03759 0.01568
01872 −0.04049 0.02080
01439 0.01526 0.06240
04687 0.5355 0.6888

7773

ificant way, based on the 95% (2.5–97.5) sample-based credible sets.
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Table 3
Possible-injury crash frequency MVPLN model results

Variable definition Mean Standard error. The 95% (2.5–97.5%) sample-based credible sets

Constant −15.85 0.8120 −17.22 −14.53
Horizontal curve length (ft) 2.90E−05 2.37E−05 −8.46E−06 6.90E−05
Degree of curvature (◦/100ft) 0.1031 7.09E-03 0.09136 0.1147
Vertical curve length (ft) −2.97E−04 1.30E−05 −3.18E−04 −2.76E−04
Vertical grade (%) 0.1616 9.20E-03 0.1465 0.1766
Average shoulder width (ft) −8.71E−03 9.48E−04 −0.01027 −7.17E−03
Surface width (ft) −0.01258 7.16E−04 −0.01371 −0.01139
Posted speed limit (miles/h) 0.03116 5.25E−03 0.02238 0.03970
Posted speed limit squared (miles2/h2) −1.40E−05 1.57E−05 −4.02E−05 1.19E−05
Average annual daily traffic (AADT) 1.08E−04 3.28E−06 1.03E−04 1.13E−04
Indicator for minor arterial: 1 = yes, 0 = otherwise 0.2257 0.02809 0.1799 0.2729
Indicator for collector: 1 = yes, 0 = otherwise 0.4971 0.03114 0.4448 0.5478
Indicator for rolling terrain: 1 = yes, 0 = otherwise −0.2344 0.02530 −0.2756 −0.1934
Indicator for mountainous terrain: 1 = yes, 0 = otherwise −0.3552 0.1301 −0.5677 −0.1452

Number of observations 7773

Note: Italics are used for parameters that do not differ from zero in a statistically significant way, based on the 95% (2.5–97.5) sample-based credible sets.

Table 4
Non-disabling injury crash frequency MVPLN model results

Variable definition Mean Standard error The 95% (2.5–97.5%) sample-based credible sets

Constant −15.37 0.9321 −16.89 −13.81
Horizontal curve length (ft) −2.01E−05 2.41E−06 −2.41E−05 −1.61E−05
Degree of curvature (◦/100 ft) 0.1576 6.04E−03 0.1477 0.1676
Vertical curve length (ft) −2.04E−04 1.12E−05 −2.22E−04 −1.85E−04
Vertical grade (%) 0.1850 0.01532 0.1602 0.2110
Average shoulder width (ft) −4.69E−03 9.17E−04 −6.22E−03 −3.22E−03
Surface width (ft) −0.01079 1.25E−03 −0.01287 −8.72E−03
Posted speed limit (miles/h) 0.01335 1.73E−03 0.01051 0.01621
Posted speed limit squared (miles2/h2) −2.30E−04 1.56E−04 −4.82E−04 3.38E−05
Average annual daily traffic (AADT) 2.37E−06 3.55E−06 −3.46E−06 8.24E−06
Indicator for minor arterial: 1 = yes, 0 = otherwise 0.2489 0.02867 0.2025 0.2963
Indicator for collector: 1 = yes, 0 = otherwise 0.4896 0.03679 0.4292 0.5508
Indicator for rolling terrain: 1 = yes, 0 = otherwise 0.1341 0.02343 0.09553 0.1733
Indicator for mountainous terrain: 1 = yes, 0 = otherwise −0.1685 0.1100 −0.3428 0.01523
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an open-source statistical computing environment described at
ttp://www.r-project.org/)10. The prior distributions for the esti-
ation are defined by the hyperparameters �� = 10, V−1

Σ = I5,
0s = (0, 0, . . ., 0)′, and Vβ0s

= 100 × I14. The Gibbs sampler
as implemented to obtain M = 8000 draws for Σ. The two M–H

lgorithms were implemented to obtain M = 8000 draws for each
f the 5 × 14 = 70 β’s and each of the 7773 × 5 = 38,865 ε’s,
espectively. The initial 1000 draws were discarded as “burn-
ns.” An adequate burn-in period eliminates the influence of the
tarting values. To help ensure chain convergence, the Gibbs
ampler and the two M–H algorithms were implemented using
wo sets of starting values11 and both converged at the same

osterior distribution of parameters. Convergence was obtained
airly quickly, under a variety of assumed priors and initial val-
es. And standard diagnostic methods, as proposed by various

10 The source code can be found in Ma (2006).
11 Zeros were used as the starting values for β in the second chain.
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ificant way, based on the 95% (2.5–97.5) sample-based credible sets.

esearchers (including Gelman et al., 2004), were used, such as
hecking for autocorrelations and cross-correlations. Estimation
esults are presented in Tables 2–6.

Based on the posterior density of Σ, positive correlations
etween crash counts at different levels of severity within the
egment do appear to exist, in a statistically significant way.
he univariate models are a special case of the MVPLN, with
ff-diagonal elements ofΣ equal to zero. Given the MVPLN pre-
ictions’ added flexibility to represent such pattern, it is expected
hat they offer somewhat better predictions.

.2. Interpretation of results

The following discussion of results emphasizes disabling and
atal injuries (Tables 5 and 6), since these arguably are of great-

st concern to agencies and policymakers. Moreover, the data
n such outcomes are more likely to be reported and more reli-
bly recorded than that for other crash outcomes (Blincoe et al.,
002). Tables 2–4 provide crash count model estimates for the

http://www.r-project.org/
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Table 5
Disabling injury crash frequency MVPLN model results

Variable definition Mean Standard error The 95% (2.5–97.5%) sample-based credible sets

Constant −16.73 2.182 −20.37 −13.12
Horizontal curve length (ft) 6.49E−05 3.97E−05 3.70E−07 1.30E−04
Degree of curvature (◦/100 ft) 0.02029 6.64E-03 9.62E-03 0.03097
Vertical curve length (ft) −3.69E−04 3.63E−05 −4.28E−04 −3.10E−04
Vertical grade (%) 0.1431 0.01101 0.1255 0.1607
Average shoulder width (ft) 6.27E−03 0.01656 −0.02102 0.03334
Surface width (ft) −9.85E−03 1.47E−03 −0.01226 −7.41E−03
Posted speed limit (miles/h) 0.01040 1.81E−03 7.42E−03 0.01344
Posted speed limit squared (miles2/h2) 3.48E−04 3.22E−04 −1.94E−04 8.64E−04
Average annual daily traffic (AADT) 5.34E−04 5.78E−05 4.38E−04 6.30E−04
Indicator for minor arterial: 1 = yes, 0 = otherwise 0.3470 0.04676 0.2700 0.4243
Indicator for collector: 1 = yes, 0 = otherwise 0.4106 0.05675 0.3171 0.5033
Indicator for rolling terrain: 1 = yes, 0 = otherwise 0.2814 0.04212 0.2133 0.3498
Indicator for mountainous terrain: 1 = yes, 0 = otherwise 167.6 115.3 −24.93 355.2
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ther three severity levels. The signs of most coefficients are
onsistent throughout the models, indicating robust directions
f effect for most control variables.

Parameter estimates shown in Tables 2–6 suggest that road-
ay design plays an important role in predicting crash counts.
or example, holding all other factors fixed, more severe injury
rashes are expected on sharper horizontal curves, while wider
houlders tend to reduce rates of less severe crashes (perhaps
y offering added maneuverability space for crash avoidance).
ased on an average road segment’s attributes and the MVPLN
odel’s average parameter estimates, Table 7 provides estimates

f percentage changes in crash rates as a function of various
esign details. For example, a 5-ft increase in (average) right
houlder width (from 2 to 7 ft) is predicted to result in 7.04%
ewer crashes (total) per 100 million VMT. A 26.6% higher

verage annual daily traffic level (rising from 3757 to 4757 vehi-
les) is predicted to increase total crash count by 16.4%—while
educing the total crash rate by 5.51%. In this way, the

VPLN model results offer statistically (and practically) sig-
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able 6
atal crash frequency MVPLN model results

ariable definition Mean Sta

onstant −24.46 6.7
orizontal curve length (ft) −3.56E−05 5.6
egree of curvature (◦/100ft) 0.02080 1.2
ertical curve length (ft) 3.67E−05 1.0
ertical grade (%) −0.05849 0.0
verage shoulder width (ft) 0.01766 0.0
urface width (ft) 0.05338 0.0
osted speed limit (miles/h) 0.01463 2.2
osted speed limit squared (miles2/h2) 1.78E−04 9.0
verage annual daily traffic (AADT) 1.64E−05 1.3

ndicator for minor arterial: 1 = yes, 0 = otherwise 0.1532 0.0
ndicator for collector: 1 = yes, 0 = otherwise 0.4176 0.1
ndicator for rolling terrain: 1 = yes, 0 = otherwise −0.1714 0.0
ndicator for mountainous terrain: 1 = yes, 0 = otherwise 1.801 0.2

umber of observations

ote: Italics are used for parameters that do not differ from zero in a statistically sign
7773

ificant way, based on the 95% (2.5–97.5) sample-based credible sets.

ificant insights into crash counts’ dependence on roadway
esign.

The magnitudes of the parameter estimates for the MVPLN
pecification are not directly comparable to those of univari-
te Poisson models (shown in Ma, 2006) or those of univariate
egative binomial (UVNB) models (also shown in Ma, 2006).
he reason for this is that the MVPLN model accounts for
orrelations across crash counts (by severity), and is there-
ore somewhat different from the univariate cases. However,
comparison of parameter signs shows that sharper curves are

ssociated with more fatal crashes in all three models (MVPLN,
VP, and UVNB). The rest of control variables are not statisti-

ally significant in both the UVP and UVNB models; however,
ome of these control variables remain showing a statistically
ignificant effect on fatal crash occurrence in the MVPLN model.

or example, speed limit is not statistically significant in the uni-
ariate models but is expected to increase fatal crash rates in the
VPLN model. Vertical curve length and segment grade show

he same pattern of effects on disabling-injury crashes in all

ndard error The 95% (2.5–97.5%) sample-based credible sets

80 −35.61 −13.63
7E−06 −4.47E−05 −2.63E−05
3E−03 0.01868 0.02274
7E−05 1.93E−05 5.39E−05
2737 −0.1032 −0.01380
3147 −0.03503 0.06981
2102 0.01937 0.08909
7E−03 0.01073 0.01835
8E−04 −1.34E−03 1.64E−03
0E−05 −4.62E−06 3.83E−05
9024 3.70E-03 0.3053
206 0.2263 0.6169
7712 −0.2997 −0.04648
251 1.436 2.172

7773

ificant way, based on the 95% (2.5–97.5) sample-based credible sets.
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Table 7
Expected percentage changes in crash rates corresponding to changes in variables

Variables Averages Changes in variable Percentage change in crash rates (per 100 million VMT)

Fatal (%) Disabling (%) Non-disabling (%) Possible (%) PDO (%) Total (%)

CURV LGT 248 (ft) +100 −0.36 0.65 −0.20 – – 0.30
DEG CURV 2.3 (◦/100 ft) +2 4.08 3.98 27.04 18.63 21.98 18.58
VCUR LGT 303 (ft) +100 0.37 −3.76 −2.06 −3.01 −2.08 −2.52
PCT GRAD 1.805 +2 −12.41 24.88 30.93 27.62 24.07 24.86
SHLDWID 2.1 (ft) +5 – – −5.54 −6.49 −7.89 −7.04
SURF WID 24 (ft) +5 −12.52 −58.65 −5.36 −6.49 4.76 0.04
SPD LIMT 50 (mile/h) +10 28.97 38.5
AADT 3757 +1000 – 41.3

Table 8
Correlation-coefficients of �εi

Fatal Disabling Non-dsabling Possible
injury

PDO

Fatal 1 0.04207 0.01777 0.02191 0.02718
Disabling 1 0.05061 0.06100 0.4328
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on-dsabling 1 0.08071 0.1304
ossible injury 1 0.3552
DO 1

hree models. For example, long vertical curves are predicted to
educe disabling-injury crashes, but steeper segments are asso-
iated more disabling-injury crashes. The coefficient signs for

emaining control variables are not in agreement across all three
odels, indicating that specification choice is important to a

roper understanding of crash count relationships.

n
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able 9
omparisons of crash predictions from univariate and multivariate models

bserved PDO Possible
981 331

VP
Prediction 1050 432.6
Difference 69.24 101.6
Percentage difference (%) 7.06 30.70

VNB
Prediction 1039 396.5
Difference 58 65.5
Percentage difference (%) 5.91 19.79

VPLN1a

Prediction 1013 358.2
Difference 32 27.2
Percentage difference (%) 3.26 8.22

VPLN2b

Prediction 1005 348.3
Difference 24 17.3
Percentage difference (%) 2.45 5.23

ote: A total of 13,050 rural two-lane road segments in the Puget Sound region were
a The MVPLN1 predictions were computed as follows: (1) 1000 samples of all se
ith the posterior distribution’s mean and correlation correlations; (2) 1000 samples
ith zero and correlation coefficients shown in Table 8; (3) expected crash counts for
b The MVPLN2 predictions were obtained as follows: (1) 7000 samples of nuisan
ean and correlation coefficients shown in Table 8; (2) 7000 expected crash counts

raws from the MCMC simulation.
6 −12.72 25.64 −1.95 12.99
7 – 10.24 4.68 16.42

Based on the description of the correlation effects earlier in
he paper, we should expect the MVPLN specification to yield
superior crash prediction model because the crash counts by

everity on the same segment of roadway are found to be corre-
ated with one another as shown in Table 8. Note that this is not
theoretical point, but rather an empirical one: in other words,
here potential correlation exists, it should be modeled. Like the
VNB approach, our approach allows for overdispersion. The

orrelations may be caused by omitted variables (such as pave-
ent quality, sight distance, driveway density, and surrounding

and use), which can influence crash occurrence at all levels of
everity. Essentially, higher crash rates of one type are associated
ot likely in models of crash prediction since crash likelihood
or all crash types is likely to rise due to the same deficiencies
n roadway design, or other unobserved factors.

Non-disabling Disabling Fatal
287 83 23

384.3 120.8 30.44
97.32 37.77 7.444
33.91 45.51 32.37

345.4 104.8 29.91
58.4 21.8 6.91
20.35 26.27 30.04

310.1 96.8 27.13
23.1 13.8 4.13

8.05 16.63 17.96

306.4 97.17 26.52
19.4 14.17 3.52

6.76 17.07 15.30

used for model prediction.
verity-specific parameters were taken from a multivariate normal distribution
of nuisance parameters (error terms) were drawn from a multivariate normal
each segment were calculated, for all 1000 samples.

ce parameters (error terms) were drawn from a multivariate normal with zero
were computed for all segments using these 7000 draws along with the 7000
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In addition, out-of-sample predictions from both univariate
nd multivariate models are compared for the different groups.
able 9 suggests that the MVPLN model with MCMC draws
redicts better than the univariate models (UVP and UVNB).
his is because the MVPLN model addresses the issue of unob-
erved heterogeneity and allows for correlations among crash
ounts at all levels of severity.

. Conclusions

Roadway safety is a major concern for the general
ublic—and its transport agencies. Roadway crashes claim
any lives and cause substantial economic losses each year.
he situation is of particular interest on rural two-lane road-
ays, which experience significantly higher fatality rates than
rban roads. There have been numerous efforts devoted to inves-
igating crash occurrence as related to roadway design features,
nvironmental conditions and traffic levels. However, almost all
uch research has relied on univariate count models; that is,
raffic crash counts at different levels of severity have been esti-

ated separately. The widely used univariate count data models
eglect the interdependence of crash counts at different levels
f severity for a specific segment of roadway.

This research simultaneously models correlated crash counts
t different levels of severity using an MVPLN regression spec-
fication, which allows for a rather general correlation structure
s well as overdispersion. With recent advances in crash model-
ng and Bayesian statistics, parameter estimation is achieved
ithin the Bayesian paradigm, using a Gibbs Sampler and
etropolis–Hastings algorithms.
Crash counts for over 7773 homogeneous segments of rural

wo-lane Washington State roadways in the Puget Sound region
n 2002 were used to estimate the model. Thanks to MCMC
imulation techniques, the marginal posterior distributions of
ll parameters of interest were obtained, and estimation results
rom the MVPLN approach offered better predictions than those
rom univariate Poisson and negative binomial models.

As anticipated, the results lend themselves to several recom-
endations for highway safety treatments and design policies.
or example, adding shoulder width is predicted to be highly
ost-effective, in terms of the crash cost reductions over the long
un.

The current MVPLN specification assumes no spatial corre-
ation across roadway segments. Various unobserved variables

ay play very similar roles in determining crash frequency on
djacent roadway segments. The assumption of no spatial corre-
ation is actually too strong in this case. These uncontrolled (or
imply unobserved) factors may also render significant spatial
orrelations over time (see, e.g., Meliker et al., 2004; Miaou et
l., 2003; Pawlovich et al., 1998.) Additionally, the high level
f correlation between PDO and disabling crashes may indicate
ome ambiguity or weakness in severity classification schemes,
f one believes that unobserved heterogeneity in omitted vari-

bles should generate significant correlation (e.g., in data sets
ith relatively few control variables available).
The framework of this research is established in its para-

etric assumptions. Parametric methods can be implemented
i
t

revention 40 (2008) 964–975 973

sing assumptions of underlying distributions and relationships.
isspecification of the distribution may lead to serious errors

n subsequent data analysis. Semi-parametric and nonparamet-
ic regression analysis relaxes these assumptions12 (see, e.g.,
urmu et al., 1999; Wooldridge, 1999; Alfò and Trovato, 2004).
or example, Gurmu et al. (1999) developed a semiparamet-
ic approach to investigate overdispersed count data using a
aguerre series expansion of an unknown density function for
nobserved heterogeneity.

The cost of relaxing such assumption requires more com-
utation and, in some instances, a more difficult-to-understand
esult. The benefits of nonparametric methods include a poten-
ially more accurate estimate of the regression function and
ften “exact” probability statements, regardless of the shape of
he population distribution from which the random sample was
rawn (Damien, 2005).

The MVPLN model estimated here incorporates the safety
ffects of several roadway design and traffic features of inter-
st to traffic and transportation engineers. However, several
eatures of interest that are not available have been omitted
rom the model, including, for example, driveway density and
ight distance. In addition, the model generally treats the effects
f individual geometric design features as independent of one
nother and ignores potential interactions among them. Such
nteractions may exist (such as combinations of horizontal and
ertical curvature on the same segment), and these should be
xamined in the future endeavors of this type.
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