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a b s t r a c t

One way to improve the efficiency of solar powered systems is to maximize the energy harvesting from
the photovoltaic module by using a maximum power point tracking algorithm. The latter must be simple
for implementation, fast and accurate to cope with fast changing atmospheric conditions and partial
shading operations. The paper presents a new maximum power point tracking method based on Golde
n-Section Optimization technique for photovoltaic systems. The proposed method converges to the
Maximum Power Point by interval shrinking. Initially, two points are selected from the search space
whose boundaries are known, evaluated then a new point is accordingly generated. At given iteration
the algorithm has a new narrowed interval bounded by the new point and one of the initial points accord-
ing to the evaluation results. The algorithm stops iterating (interval shrinking) when the interval
becomes small enough and the photovoltaic system is forced to operate at the average value of the last
found interval without perturbing either the voltage or the duty cycle. This makes the photovoltaic sys-
tem converges rapidly to the maximum power point without voltage or power oscillations around the
maximum power point thereby lower energy waste. A comparison results with recently published work
are provided to show the validity of the proposed algorithm under fast changing conditions and partial
shading.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The steadily increasing demand on electric energy and rising
prices of the fuel used in conventional power plants together with
increasing concerns about their environmental effects, have
encouraged intensive research for, friendly environmental, low-
cost generation plants, particularly solar energy which has proved
its worth for power plants of multiple MW proportions, as well as
smaller applications such as rural electrifications [1]. Solar energy
is considered as one of the most promising renewable energy of the
future in Algeria [2] and has become a necessity for people living in
the southern to cope with the long hot season [3]. Besides the
availability of the sunlight along the year, PV systems are easy to
install, present neither moving parts nor combustion processes
hence environmentally friendly and almost maintenance free [2].
However, PV systems, which mainly comprise the PVG and power
electronic processor, suffer from very low system efficiency, a
problem that arguably needs to be addressed. One should differen-
tiate between conversion efficiency and utilisation efficiency of PV
modules. Conversion efficiency, being difficult to estimate as a
parameter [1], is very low compared to utilisation efficiency which
is the ratio of output power to the maximum power that can be
extracted at given atmospheric conditions (irradiance, temperature
and air mass). In the present work, the latter efficiency is the only
parameter of interest. Therefore, one of the most economical ways
to improve the utilisation efficiency of PVGs is to ensure that it is
always operating at its maximum power point irrespective of the
environment conditions. This can be achieved by associating a
maximum power point tracking (MPPT) controller to the power
electronic converter (usually a chopper) in order to adjust the duty
cycle to match the load.

Much work has been devoted to improve the performance of PV
systems through developing new or upgrading already existed
MPPT algorithms. To this, several papers have been published to
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Nomenclature

Abbreviation
ACO ant colony optimization
ANN Artificial Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
AI Artificial Intelligence
CS Cuckoo search
FL fuzzy logic
GA Genetic Algorithm
GMPP global maximum power point
GSO Golden Section Optimization
HC Hill Climbing
IC Incremental Conductance
MPPT maximum power point tracking
MPP maximum power point
P&O Perturb & Observe
PSO Particle Swarm Optimization
PV photovoltaic
PVG photovoltaic generator
PWM pulse width modulation
STC Standard Test Conditions

List of symbols
e voltage precision
a diode ideality constant

G irradiation level in W/m2

GSTC nominal irradiation level (in 1000W/m2)
I PV array current output
IMPP current of maximum power point
IPV light-generated current
IS Diode’s reverse saturation current
ISCN nominal short circuit current of the PV module
K Boltzmann’s constant
KI short circuit current coefficient
KV open circuit voltage coefficient
Np number of parallel-connected cells
NS number of series-connected cells
q electron’s electric charge
Rsh parallel or shunt resistance
Rs series resistance
V PV module’s voltage output
VOCN PV module’s nominal open-circuit voltage
VMPP voltage of maximum power point
VPV PV array voltage
VT thermal voltage of the PV cell
TSTC nominal temperature (298 K)
DT variation from the nominal temperature
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review, discuss and classify these MPPT algorithms. For instance, in
[4] two main groups of MPPTs are distinguished: conventional
group that includes Perturb and Observe (P&O), Incremental Con-
ductance (IC), and Hill Climbing (HC) techniques and stochastic
based methods group, then a comparison between those tech-
niques within the same group is done in terms of convergence
speed, complexity, ability to truck the true MPP, etc. Different
MPPT algorithms which are based on the use of either AI or evolu-
tionary methods have been listed in [5]. A focus has been given to
their implementation using FPGA ships and subsequently a com-
parison between them is made in terms of complexity, efficiency,
rapidity and memory space requirement. Classification adopted
in [6] is based on the ability of MPPT technique to cope with uni-
form and non-uniform irradiance. This paper raises the outcome
that evolutionary algorithms based MPPT techniques outperform
others in terms of seeking GMPP but there are still many concerns
when it comes to implementation. A comparison through simula-
tion and implementation using FPGA of four MPPT techniques is
presented in [7]. Fuzzy logic, Artificial Neural Network (ANN),
Adaptive Neuro-Fuzzy Inference System (ANFIS) and GA-
optimized FLC based MPPTs are considered and compared in terms
of complexity, rapidity, oscillation around MPP and memory space
requirement.

None of the previously mentioned review paper has considered
MPPTs which are based on the mathematical model of the PVG.
Finding relationship between weather parameters and PVG output
voltage and current using either curve fitting or training tech-
niques would make deriving the MPP parameters (duty cycle, cur-
rent or voltage) an easy forward task. These relationships can be
obtained by training an ANFIS to become MPPT controller [8], esti-
mating the input resistance of the PV system (PVG + chopper)
which has a direct relationship with MPP [9] or applying nonlinear
model identification methods [10]. Model-based MPPT techniques
offer the advantage of being very fast but valid only for the PVG
under test and cannot cope with partial shading operations.

In general, MPPT algorithms are classified according to the type
of the algorithm used. This classification makes difference between
conventional methods, Artificial Intelligence techniques (AI) and
population-based techniques. Conventional MPPT methods include
P&O, IC, HC and their modified version techniques [4]. AI-based
MPPT methods use one or combine two of the soft computing tech-
niques: In [11] the authors have designed a fuzzy-logic controller
(FLC) for seeking the MPP deliverable by a photovoltaic module
using the measured values of the photovoltaic current and voltage.
The simulation results show a satisfactory performance with a
good agreement between the expected and the obtained values.
An adaptive fuzzy logic based MPPT method is proposed in [12].
It consists to integrate two different rules; the first one is used to
adjust the duty cycle of the DC–DC converter, while the second
one is employed for an online adjusting of the controller’s gain.
Results indicate that the proposed method outperforms the con-
ventional fuzzy-logic controller. A new embedded digital MPPT
system based on ANN is recently developed in [13]. The advantages
of the proposed system include low computation requirement, fast
tracking speed and high static/dynamic tracking efficiencies. In
addition, using the developed neural network model, the photo-
voltaic generation systems user can apply the developed MPPT
controller to any photovoltaic module without the need to modify
the firmware of the photovoltaic generation system.

The AI-based MPPT techniques take advantage of the expert’s
knowledge to develop their control strategy. Population based
techniques or evolutionary algorithms are introduced to tackle
multivariable optimization problems with multiple optimal points.
Some of them have been adapted to deal with MPPT problem. Par-
ticle Swarm optimization (PSO) proposed in [14] has been com-
bined with direct duty control to truck the GMPP and eliminate
power oscillations at steady state (around MPP). Genetic Algorithm
(GA) in [15] has been modified to behave like the conventional P&O
by selecting individuals of three chromosomes: voltage, search
direction and step size. New individuals are obtained by perform-
ing crossover and mutation which integrate the principle of P&O.
This results in fast convergence to GMPP. A continuous version of
ant colony optimization has been employed to develop a global
MPPT in [16] using the archive of solution. As the PSO, ACO has
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four parameters which must be well tuned to obtain good search
performance, these parameters are: size of solution archive, num-
ber of ants in an iteration, convergence speed constant and locality
of search space. Cukoo search based MPPT used in [17] is similar to
HC/P&O as it uses a step size to generate voltage samples. Beside
the use of population instead of single solution, the step size based
on Lévy flight offers more randomness to avoid getting trapped by
local optima. Unlike PSO and ACO, CS requires tuning of only two
parameters.

Conventional MPPT algorithms are mainly simple and easy for
implementation. However, the oscillations around the MPP which
results in large waste of energy during operation as well as the low
performance when the PVG experiences a rapid change in irradi-
ance and temperature are the main drawbacks of the first group
[4]. Exceptionally, IC is comparatively more accurate and faster
compared to the others algorithms of the same group as it is based
on the computation of the gradient. However, at low irradiance, the
gradient of the PV characteristics becomes a source of instability
and gradient-based algorithms can be trapped by local MPPs in
case of non-uniform irradiance or partial shading [4].

The second group of MPPTs, which is based on the use of AI
techniques, offers the advantage to be independent of PV model
and robust against parameter variations and inputs noises. How-
ever, designing such MPPTs require an accurate real-time data or
expert knowledge [5]. FL-based MPPT is essentially based on estab-
lishing fuzzy rules mapping inputs to the output that can be duty
cycle, reference voltage or reference current of the DC–DC con-
verter’s PWM controller. Besides, the absence of systematic rules
to set up the required number of fuzzy sets for each variable as
well as the values of normalization and de-normalization gains,
it is very difficult to adjust the overlap membership functions
and come up with an accurate fuzzy rules base for the inference
system [8]. Both ANN and ANFIS need an input–output mapping
data to be used in the training stage except that the ANFIS being
designed by optimization requires less computation compared to
ANN system [8]. AI-based MPPTs converge rapidly and eliminate
the steady state oscillations and can cope with rapid change of cli-
mate conditions but are not standard like P&O for instance. In
others words, the AI-based MPPT cannot be designed to deal with
all PV modules available in the market and fails to converge to the
global MPP when the PV module undergoes partial shading [6].

The last group, population based MPPTs, offers in addition to
the advantages of the second group, the ability to cope with non-
uniform irradiance. In the case of non-uniform irradiance, the
P-V characteristic of the PV module exhibits more than one MPP.
Thanks to their stochastic search that explores randomly the
search space, these algorithms can find the global maximum power
point while retaining most of the other advantages. Population-
based algorithms use many stochastic parameters such as popula-
tion size, mutation rate, crossover probability in GA and inertia
weight, and weighting factors in PSO. These parameters are
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Fig. 1. A PV system with a
randomly chosen and their values must be precisely tuned for
the algorithm to converge. In addition, any change in the PV char-
acteristics will affect the performance of the MPPT algorithm and
these parameters must be re-adjusted to regain its convergence.
Besides, the ability of stochastic MPPTs to converge to the global
MPP cannot ensure that the global MPP is reached every time the
PV system undergoes partial shading. This can be easily shown
by the fact that global search algorithms are mostly used in off line
optimization problems and must be run for several times to con-
clude that the best solution is the global one [18,19].

In this paper, a new and simple maximum power point tracking
algorithm is proposed. The algorithm is based on the use of Golden
Section Optimization (GSO) technique. In our knowledge, it is the
first time that GSO is used to track the MPP under fast changing
conditions and partial shading, as proposed in this paper. The
search principle of GSO makes it rapidly converging, able to deal
with fast variation of the atmospheric parameters and able to con-
verge to the global MPP under partially shaded PV array.

The paper is organized as follows: the mathematical model of
PV system is presented in Section 2. In Section 3, the proposed
GSO-based MPPT algorithm is described and its application in
different real situations is undertaken in Section 4. A conclusion
summarizing the advantages of the proposed MPPT algorithm is
given in Section 5.
2. PV system modelling

Fig. 1 shows a simplified scheme of a standalone PV system
with DC–DC buck converter.

This section is devoted to PV module modelling which is a
matrix of elementary cells that are the heart of PV systems. The
modelling of PV systems starts from the model of the elementary
PV cell that is derived from that of the P–N junction.

2.1. Ideal photovoltaic cell

The PV cell combines the behavior of either voltage or current
sources according to the operating point. This behavior can be
obtained by connecting a sunlight-sensitive current source with a
p–n junction of a semiconductor material being sensitive to sun-
light and temperature. The dot-line square in Fig. 2 shows the
model of the ideal PV cell. The dc current generated by the PV cell
is expressed as follows

I ¼ Ipv;cell � Is;cell e
V

aVt � 1
� �

ð1Þ

The first term in Eq. (1), that is Ipv,cell, is proportional to the irra-
diance intensity whereas the second term, the diode current,
expresses the non-linear relationship between the PV cell current
and voltage. A practical PV cell, shown in Fig. 2, includes series
and parallel resistances [20]. The series resistance represents the
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Table 1
KC200GT specifications at STC (AM1.5, G = 1 kW/m2, T = 25 �C).

Parameter Variable Value

Peak power (W) Pmp 200.143
Peak power voltage (V) Vmp 26.3
Peak power current (A) Imp 7.61
Open circuit voltage (V) Vocn 32.9
Short-circuit current (A) Iscn 8.21
Temperature coefficient of voltage (V/K) Kv �0.123
Temperature coefficient of current (A/K) KI 0.0032
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Fig. 3. Equivalent circuit of PV module.
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Fig. 2. Equivalent circuit of an ideal and practical PV cell.
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contact resistance of the elements constituting the PV cell while
the parallel resistance models the leakage current of the P–N
junction.

This model is known as the single diode equivalent circuit of the
PV cell. The larger number of diodes the equivalent circuit con-
tains, the more accurate is the modelling of the PV cell behavior,
however, at the expense of more computation complexity. The sin-
gle diode model shown in Fig. 2 is adopted for this study, due to its
simplicity.
Number of series cells Ns 54
Number of parallel cells Np 1
2.2. PV module modelling

Commercially photovoltaic devices are available as sets of series
and/or parallel-connected PV cells combined into one item, the PV
module, to produce higher voltage, current and power, as shown in
Fig. 3.

The equation of the I–V characteristic of the PV module is
obtained from Eq. (1) by including the equivalent module series
resistance, shunt resistance and the number of cells connected in
series and in parallel.

I ¼ Np Ipv � Is e
qðVþI:Rs Þ
aNsKT � 1

� �� �
� ðV þ I:RsÞ

Rsh
ð2Þ

where Vt the PV cell thermal voltage in Eq. (1) is substituted by that
of the module thermal voltage given by Vt ¼ NsKT

q and Ns and Np are

respectively the number of cells connected in series and in parallel
forming the PV module.

The constant a expressing the degree of ideality of the diode
may be arbitrary chosen from the interval (1, 1.5) [20]. The light
generated current of PV cell depends linearly on the irradiance
and is also influenced by the temperature:

Ipv ¼ G
GSTC

� �
ðIpvn þ KiðT � TSTCÞÞ ð3Þ

Ipvn is the nominal light-generated current provided at GSTC, TSTC
which refer to the values at nominal or Standard Test Conditions
(1 kW/m2, 25 �C). The nominal light-generated current is not avail-
able in the datasheet of the PV panel but estimated as [20]:

Ipvn ¼ Rs þ Rsh

Rs

� �
Iscn ð4Þ

The second term in Eq. (2) is the diode current that is function of
the voltage and current coefficients given by the equation below:

Is ¼ Iscn þ KIDT

e
VocnþKV DT

aVt � 1
ð5Þ

where Iscn is the nominal short-circuit current or the maximum cur-
rent available at the terminals of the practical device at nominal
conditions.
2.3. PV module characteristics

The electrical characteristics of the PV module are represented
by the I–V characteristics for different atmospheric conditions
and from which the P–V curves are derived. The PV characteristics
are the results of solving Eqs. (2)–(5) for different values of PV
module voltage, using for example Matlab/Simulink software. Prior
simulating the PV module whose parameters are provided by the
manufacturer, the identification of the series and parallel resis-
tances must be done. Table 1 reports the specification of the PV
module KC200GT at Standard Test Conditions (STC).

Different algorithms of PV parameters extraction are available
and the one of [20] can easily be implemented. The algorithm
adjusts the values of Rs and Rsh so that I–V model matches with
the three experimental remarkable points (the open circuit point,
the short circuit point and the maximum power point).

The remaining parameter that is the ideality factor, a, is
adjusted to further improve the model matching with other exper-
imental points others than the remarkable points. Running the
algorithm has given the following values: Rs = 0.23X,
Rsh = 601.34X and a = 1.3. Using the obtained values, Eqs. (2)–(5)
are then solved with different irradiance levels and PV cell temper-
atures. The curve of the PV power can be plotted by multiplying the
PV current and PV voltage. Fig. 4(a) shows the PV power versus the
voltage with constant temperature (T = 25 �C) varying irradiance G
(from 200 to 1000 with step of 200 W/m2). Fig. 4(b) illustrates the
P–V characteristics at constant G (1000 W/m2) but varying cell
temperature (10, 30, 50 and 70 �C). It is easy seen from both figures
that the MPP locus varies with the variation of the operating
climate conditions.
2.4. Partially shaded PV module characteristics

When the PV array operates under uniform solar irradiance, its
resulting P–V characteristic curve exhibits a single MPP under
constant atmospheric conditions as shown in Fig. 4. For the same
PV array, the power extracted would not be that shown in Fig. 4,
if some parts of the PV array are shaded by a nearby tree, chimney,
or cloud. Under partial shading conditions, the shaded region of PV
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Fig. 4. P–V characteristics of KC200GT PV module at different G and T.
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receives less intensity of sunlight as compared to other region. The
shaded PV module would have to absorb a large amount of the
electric power generated by the non-shaded PV modules [6]. This
operation condition can damage PV cells of the shaded module.
To overcome this problem, a bypass diode is commonly connected
in parallel with each PV module in order to provide an alternative
path during partial shading, helping to avoid damage of PV mod-
ules. However, if the insertion of a bypass diode prevents damaging
the PV module it will result in multiple peaks P–V characteristics
[21].

Fig. 5 depicts I–V and P–V characteristics of a partially shaded
PV array composed of two series connected KC200GT PV modules.
The red1 line represents the characteristic of the PV array with uni-
form solar irradiance (1 kW/m2). The blue characteristics are
obtained by varying the irradiance of only one module from
0.8 kW/m2 to 0.4 kW/m2 with a step of 0.2 kW/m2.
3. MPPT using Golden Section Optimization technique

The obtained P–V characteristics of the KC200GT PV module can
be generalized for any commercial PV module in terms of atmo-
spheric parameters effect on the MPP. PV systems must include
MPPT controllers to improve the efficiency of the overall system
and thereby reducing the payback time.
1 For interpretation of color in Fig. 5, the reader is referred to the web version of
this article.
3.1. Golden Section Optimization (GSO) technique

The name ‘‘Golden Section” originates from a classical problem
of dividing line segments in a particular way [22–24]. The line
segment limited by the search space [a, b] of length L is divided
into two sub-segments, the major length L1 and the minor length
L2, such that

L
L1

¼ L1
L2

ð6Þ

Eq. (6) can be rewritten as

L1 þ L2
L1

¼ L1
L2

¼ U ð7Þ

where / is the Golden ratio that is the quotient of the major sub-
segment to the minor sub-segment.

Eq. (7) results in following quadratic equation in terms of /:

U2 �U� 1 ¼ 0 ð8Þ
Solution of Eq. (8) for / that must be positive results in

U ¼ 1þ ffiffiffi
5

p

2
¼ 1:618 ð9Þ

The Golden Section (a) being the ratio of the minor sub-
segment and the major sub-segment is the reciprocal of the Golden
ratio.
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a ¼ 1
U

¼ U� 1 ¼ 0:618 ð10Þ

In line-search optimization, this method is known as Golden
Section Optimization technique that uses the Golden Section to
generate two points from the search space (line limited by the
interval [a, b]).

X1 ¼ aþ 0:618ðb� aÞ
X2 ¼ b� 0:618ðb� aÞ ð11Þ

The cost function to be maximized, f(x), is evaluated at these
two points X1 and X2.

– If f(X1) < f(X2), the abscissa of the maximum point cannot be less
than X1. Thus, one may conclude that the maximum is in the
range of [X1, b] which is taken as the new interval for the next
iteration.

– Else, if f(X1) > f(X2), the maximum’s abscissa must be less than
X2. Therefore the maximum must lie in the range [a, X2], the
interval taken in the next iteration. The process is continuously
repeated until the difference |X1–X2| is less than a certain cho-
sen precision, the resultant maximum’s abscissa is given at
point X0 = 0.5(X1 + X2).

3.2. GSO-based MPPT

It can be noticed from the previous section that the evaluation
needs the knowledge of the cost function, f(X) which is not avail-
able in PV system. However, for a given reference voltage, the
power is evaluated by measuring first the output PV panel current
and voltage, and then multiply the two readings to obtain the
power value. Therefore, in GSO-based MPPT system, the searching
variable is taken as voltage and the function to be optimized is rep-
resented by the P–V curve of the panel that must be on-line sam-
pled. The searching interval could be as [0, Vocn] or slightly
reduced from the left since the Vmp is always closer to the open
circuit voltage. Initially two reference voltage values V�
1;V

�
2 are

generated from the starting interval [a, b] such that:

V�
1 ¼ aþ 0:618ðb� aÞ ð12Þ

V�
2 ¼ b� 0:618ðb� aÞ ð13Þ
The length of the search space is L = b�a, therefore upon substi-

tuting b = L + a in Eq. (13), the same value of the reference could be
written as

V�
2 ¼ aþ 0:382ðb� aÞ ð14Þ
This makes the generation of the two values referred to the

same point a. The power values corresponding to these reference
voltage values, P(V1

⁄) and P(V2
⁄) are measured then compared and

accordingly the search interval is shrunk from either the right or
the left. Three points are kept and the forth is taken away. The pro-
cess is continued until the MPP is reached, that is

V�
2 � V�

1

�� �� 6 e ð15Þ
Once the MPP is reached, the voltage reference is kept constant

by the PI controller and the system is forced to operate at that
point, unless a change in T or G occurs and the algorithm restarts
the search of the new MPP. The flowchart depicted in Fig. 6 sum-
marizes the entire proposed algorithm.
4. Results and discussion

To verify the effectiveness of the proposed algorithm different
simulations have been carried out using MATLAB/Simulink soft-
ware and under different conditions namely: STC conditions, fast
varying atmospheric conditions and under partial conditions.

Fig. 7 shows the MATLAB/Simulink program of the whole sys-
tem shown in Fig. 1. The flowchart of the GSO-based MPPT
depicted in Fig. 6, implemented using embedded function available
in the software’s library. Both the PV module and the buck
converter being used as interface between the load and the PV



Table 2
Values of components of the DC–DC converter.

Components Values

Load resistor, (RL) 1X
Inductor, (L) 300 lH
Input capacitor, (Cin) 100 lF
Output capacitor, (Cout) 990 lF
MOSFEt’s switching frequency, (fs) 100 kHz

(a) 

(b) 

 (c) 

GSO-based 
MPPT 

PWM 
Controller 

Fig. 7. MATLAB/Simulink program of the developed GSO-based MPPT system: (a) PVG + buck DC–DC converter, (b) control circuit (GSO-MPPT + PI + PWM circuit) and (c)
measurements.
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generator is implemented using ‘SimPowerSystems’ toolbox, avail-
able also in the same software. The parameters of the buck
DC–DC converter components are listed in Table 2.
4.1. Test under STC

Under Standard Test Conditions (STC) the PV module exhibits
the same atmospheric conditions shown in the datasheet provided
by the manufacturer which are G = 1000 W/m2, T = 25 �C. The sim-
ulation starts with a random operating point that is different from
the maximum power operating point (Vmp, Imp) and the initial
maximum power chosen in the GSO-based MPPT is zero. This
makes the algorithm starts seeking the real Pmp. Fig. 8 depicts
the variation of the reference voltage generated by the GSO-
based MPPT algorithm, the PV voltage and the output or the load
voltage. Fig. 9 illustrates the waveforms of the PV module current
and the load current and the power extracted from the PV module.
The process of shrinking the interval is clear in the curve of the ref-
erence voltage. The algorithm has made 7 iterations to reach the
desired voltage or Vmp = 26.3 V according to the datasheet.

From Fig. 8(b), it can be noticed, that once the algorithm con-
verged to the MPP, the voltage of the PV module as well as the load
voltage (chopper’s output voltage) are maintained constant with-
out any oscillations. The time response to reach the steady state
operating point is about 0.02 s. The current of PV as well as the out-
put current go through the dynamic of the same time to settle
down to their maximum power values, as shown in Fig. 9(a).

The steady state output power of the PV is 200 W, Fig. 9(b),
which is the maximum power that can be extracted from the panel
at G = 1000 W/m2. When the GSO-based MPPT algorithm seeks, the
optimal voltage causes oscillations of PV voltage and current dur-
ing Pmp search. These oscillations of current and voltage result in
power oscillations and take only 0.025 s, which is the convergence
time of the algorithm.

4.2. Test under variable irradiance

In this test, the temperature is kept constant at T = 25 �C and
different step changes in the irradiance are introduced. The time
step of irradiance change is set to 0.2 s that is a perturbation



Fig. 8. MPP’s seeking process by GSO-based MPPT: (a) reference voltage, and (b) PV and load voltages.

Fig. 9. MPP tracking: (a) current waveforms, and (b) PV panel output power.
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Fig. 10. Results of changing in the irradiance level: (a) voltage waveforms, and (b) PV panel output power.
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frequency of 5 Hz. The initial irradiance is G = 400W/m2,
then stepped up to G = 800 W/m2, and finally increased to
G = 1000 W/m2. The obtained results are shown in Fig. 10.

Using the P–V characteristics of the PV module under study, it is
easy to check the matching between the maximum power points
corresponding to the different irradiance levels and those obtained
by the GSO-based MPPT algorithm. Besides, oscillations of voltage
do not exist at all which results in constant output power of the PV
panel and thereby avoiding waste of energy due to oscillations.
Except the oscillations due the Golden-section search, the output
power is almost very close to the maximum power produced by
the PV module.
4.3. Test under variable temperature

In this test, the irradiance is kept constant at G = 1000 W/m2

and a sequence of step change in temperature is introduced. The
time step of temperature change is the same as that of the irradi-
ance, 0.2 s (or fMPP = 5 Hz). The temperature starts with 25 �C
stepped up to 50 �C and finally to 70 �C. The obtained results are
depicted in Fig. 11. Upon comparison of the P–V characteristics at
the above temperature values with those extracted by GSO-based
MPPT algorithm, the effectiveness of the latter and its accuracy
in tracking the maximum power when the PV panel undertakes
variation of temperature can be checked.
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Fig. 11. Results of changing the temperature: (a) voltage waveforms, and (b) PV panel output power.
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4.4. Tests under partial shading

In this subsection, the behavior of the proposed algorithm is
investigated while the PV module undergoes partial shading. Two
tests have been carried out on the PV array, whose P–V character-
istics are shown in Fig. 5.

4.4.1. Test 1
Initially, the PV array is operated under uniform condition

T = 25 �C, G = 1000 W/m2. At t = 0.2 s the partial shading occurs
when the irradiance of one module is reduced to 800W/m2 such
that the resulting P–V characteristic curve is the one given on
Fig. 5(b) and the maximum power available is 340 W. Fig. 12 shows
the simulation results of the PV array under these conditions by
using the developed GSO-based MPPT algorithm. Under uniform
irradiance and standard temperature, the PV array generates
400W along the interval from 0 to 0.2 s, see Fig. 12(b). This value
is the result of the sum of two identical series connected PV
modules operating at their maximum power point thanks to the
GSO-based MPPT.

At t = 0.2 s, one of the modules receives an irradiance of 800W/m2

which makes the PV panel undergoes partial shading and the
P–V characteristic of the PV has two peaks with the global MPP
being 340 W. Fig. 12(a) and (b) shows that the proposed algorithm
converged rapidly to the appropriate voltage leading to the MPP of
340 W.

4.4.2. Test 2
To assess the robustness of the proposed algorithm in seeking

the global MPP, the PV array has been subjected to non-uniform
irradiance from the starting. PV module 1 receives an irradiance
of 800 W/m2 and the other one receives 1000 W/m2, the tempera-
Fig. 12. Operation under partial shading, (a) voltag
ture is kept constant at 25 �C. The obtained results are shown in
Fig. 13. It is clearly observed, that the GSO-based MPPT is not
trapped by the local maximum power of the P–V characteristics
and has converged accurately to the global MPP. The way the algo-
rithm seeks the appropriate voltage looks like that used by evolu-
tionary algorithms which are global search algorithms such as
Particle Swarm Optimization algorithm. In fact, initial population
or particles are chosen in such a way some of them are located
in the current source-like region curve, some are chosen from the
voltage source-like region curve and the remaining are chosen
between the two regions [14]. After the evaluation, new particles
will be generated using the concept of the velocity, the personal
best particle and the global best particle. At the end, all particles
will converge to the global best particle and their velocities will
be closer to zero.
4.5. Comparison with other methods

In this section, a performance comparison between the pro-
posed method and others recently published MPPTs is undertaken.
To this, different indices are adopted and employed in order eval-
uate the performances of the proposed MPPT method. Some MPPT
techniques are validated under static tracking condition only and
some of them have been validated even under dynamic tracking
conditions. Because of this, two different comparison studies will
be investigated in this section. The first study, which regards static
tracking, compares the proposed MPPT with others based on some
performances indices such as: response time, static error, algo-
rithm’s complexity, required sensors, sensitivity, tracking effi-
ciency among others. The second study, which regards dynamic
tracking, compares the proposed the MPPT with others based on
the dynamic efficiency, convergence time and complexity level.
e waveforms, and (b) PV panel output power.



Fig. 14. The PV output power of the compared methods at STD.

Fig. 13. Operation under partial shading, test 2 (a) voltage waveforms, and (b) PV panel output power.
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4.5.1. Regarding static tracking
In this test, the proposed method is compared with the conven-

tional P&O MPPT method and two recently published MPPT algo-
rithms which are based on fuzzy logic control. The fuzzy logic
based MPPT [25] was called Hill-Climbing FLC. This technique uses
16 fuzzy control rules which have been derived from the principle
of conventional Hill-Climbing MPPT technique. Therefore, this
technique aims to take advantage of the Hill-Climbing search and
overcome its three drawbacks, such as: the slow convergence,
the considerable steady state oscillations and the large deviation
from the MPP under fast variations of irradiance level. The second
MPPT is known as adaptive P&O-FLC method [26]. This method is
inspired from the principle of the conventional P&O MPPT algo-
rithm. This method uses the same inputs of conventional P&O
and replaces the comparison, switching and duty cycle updating
by fuzzy logic controller. The universe of discourse of the two
inputs has been covered by 5 fuzzy sets which results in 25 fuzzy
rules.
Table 3
Performances of the four MPPT methods.

Evaluated parameters Proposed method Convent

Response time (s) 0.025 0.069
Static error (W) 1.143 2.343
Power production (W) 199 197.8
Static efficiency (%) 99.43 98.83
Sensors used (Current, voltage) (Current
Tracking method GSO P&O
Algorithm complexity Very low Very low
Direct duty cycle control No No
Robustness Yes Yes
In this work, the two above methods have been reprogrammed
using Matlab/Simulink software package and applied to the same
PV module associated with GSO-MPPT controller being proposed
in this work.

Fig. 14 shows the simulation results of the above two MPPT
techniques, the conventional P&O MPPT and the GSO-MPPT. Simu-
lation has been done at STC in order to compute the static effi-
ciency that is the ratio of steady state power output to the Pmpp

provided by the PV module’s manufacturer. It can be noticed that
all the MPPT techniques have converged to the right MPP but with
different performance indices that are shown in Table 3.

It can be observed that conventional P&O method has low com-
plexitybut it presents thehighest static error (2.343 W)and the low-
est efficiency (98.83%). It is obvious that Hill-Climbing FLC presents
less complexity with only 16 rules as compared to the adaptive
P&O-FLCandoutperforms theconventional P&O.However, the static
efficiency is lower as compared to that of the adaptive P&O-FLC that
provides the highest static efficiency but at the expense of using 25
rules making it the most complex in terms of implementation.

The proposed method performs better control in terms of con-
vergence time and presents an algorithm as simple as that of the
P&O. In addition, the proposed method does not require knowledge
about the PV system and uses only two sensors. The static error of
the proposed GSO-MPPT is higher than those presented above but
lower than that of the conventional P&O MPPT that is still used.
4.5.2. Regarding dynamic tracking
In the previous section, it has been shown that the proposed

GSO-MPPT tracks accurately the MPP irrespective of the climate
conditions. In fact, to verify the dynamic tracking of the proposed
algorithm, the PV module must exhibits a special variation of the
irradiance according to the European Standard EN50530 [27].

The test sequence starts with 30% of GSTC that takes some initial
setting time, and then the irradiance is linearly increased with a
given slope during a raise time t1 to standard GSTC. The irradiance
ional P&O Hill Climbing FLC Adaptive P&O-FLC

0.055 0.04
0.643 Negligible
199.5 200.1
99.68 99.98

, voltage) (Current, voltage) (Current, voltage)
FLC with 16 rules FLC with 25 rules
Medium High
Yes Yes
Yes Yes
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Fig. 15. Dynamic tracking results: (a) power waveforms, and (b) tracking error.

Table 4
Dynamic tracking efficiency and complexity level.

MPPT method gdynamic (%) Convergence time (s) Complexity level

PLS [13] 99.67 0.007 Medium
CE [13] 99.85 0.007 Medium
ANFIS [8] – 0.25 Medium
GSO (proposed) 99.602 0.025 Easy
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is kept constant during a period of time t2 (dwell time of the high
irradiance level) then linearly dropped to its initial value for a per-
iod of time t3 after which the irradiance will be kept constant last-
ing t4 (dwell time of the low irradiance level). This pattern is
repeated as much as required by the different tests. Once the test
is over, the dynamic tracking efficiency is calculated as follows:

gdynamic ¼
R T
0 V � IdtR T
0 PMAXdt

� 100 ¼
R 44
0 PpvdtR 44

0 PMAXdt
� 100 ð16Þ

The first pattern test of the European Standard has been chosen
with little modification to avoid obtaining a symmetric variation
profile of the irradiance and therefore increasing the degree of dif-
ficulty. Fig. 15 depicts the simulated tracking waveforms and the
tracking error respectively. The peaks of Ppv in Fig. 15(a) that result
each time the irradiance level is changed come from the fact that
GSO-based MPPT generates two voltage references from the search
space (from the left and from the right). It is obvious that one is
closer to the MPP but other is far from it. Therefore, the later causes
the biggest peak. After that, power peaks decline as the search
space around the MPP narrows till the algorithm converges to
the real MPP. To compute the dynamic efficiency, Matlab built-in
function ‘‘trapz” has been used to approximate the two integrals
in the nominator and the denominator of Eq. (16). The dynamic
efficiency has been found to be 99.602%.

Table 4 depicts a comparison in terms of dynamic tracking effi-
ciency and convergence time between the GSO-MPPT and the two
EML-based MPPTs proposed in [9]. As can be seen from Table 4, the
dynamic efficiency of the proposed GSO-based MPPT is comparable
with the efficiency of the methods [9] but the convergence to MPP
is slower. Obviously, EML-based MPPTs are very fast because both
methods piecewise line segments (PLS) and cubic equation (CE)
use an emulator of MPP locus (EML). Using either a PLS or CE to
model the MPP locus makes the process of seeking the MPP as sim-
ple as a forward computation of first order or polynomial single
variable equation respectively.

The parameters of these equations are obtained by an off-line
trained ANN using the PV characteristics of the investigated PVG.
As results, both MPPT methods are model-based techniques that
are expected to be very fast. However, besides the lack of robust-
ness of model-based MPPTs, both techniques [13] are trained using
data obtained by varying only the irradiance level. To take into
account the effect of the temperature, a compensation circuit is
used to shift left/right if the operating temperature increases/
decreases, however, shifting the operating point is not as accurate
as seeking the MPP using an MPPT algorithm. As reported in [5],
the main drawback of ANNs or ANFIS-based MPPT is that it could
fail when the PV modules start to be degraded, in this situation,
training with new data should be carried out periodically. Finally,
upon comparison with the aforementioned methods, the proposed
GSO-based MPPT’s can easily track the global MPPT with fast con-
vergence time.
5. Conclusion and future work

In order to improve the efficiency of PV systems, the PV module
is associated to a chopper whose voltage or duty cycle is controlled
by a MPPT algorithm. In this paper, a newMPPT algorithm which is
based on Golden Section Optimization technique is proposed. First,
the paper presents the principle of the Golden Section Optimization
technique and then derives the flowchart of the MPPT based on
this new investigated technique. Several tests have been conducted
to verify the performances of the algorithm under STC conditions,
fast changing conditions and partial shading operations. The main
advantages are:

1. Only addition/subtraction and multiplications are used in the
algorithm which employs a few arithmetic operations to com-
pute the reference voltage.

2. The convergence of the algorithm is very fast as the MPP is
reached approximately within seven (7) steps.

3. Once the MPP is reached, the PV module operates with constant
voltage and current without any steady state oscillations avoid-
ing hence waste of energy due to oscillations.

4. Under fast changing atmospheric conditions, the algorithm
exhibits high dynamic efficiency with very low tracking error.

5. Finally under partial shading condition, the proposed MPPT
technique behaves like a global search algorithm and efficiently
tracks the global MPP.

Besides, the algorithm has no parameter to tune and needs only
the knowledge of the value of the open-circuit voltage of the PV
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module under study. This value constitutes the upper value while
zero is the lower value of the search space used by the GSO-based
MPPT.

Experimental prototype of the deigned GSO-based MPPT (e.g.
implementation into a low cost microcontroller) for real time
applications will be the subject of out further investigations.
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