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A B S T R A C T

Application of the multi-arm space robot will be more effective than single arm especially when the target is
tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated
trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics sin-
gularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for co-
ordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve
to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the
optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The pro-
posed method is not sensitive to the singularity issue due to the application of forward kinematic equations.
Simulation results are presented for coordinated trajectory planning of two kinematically redundant manip-
ulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

1. Introduction

In light of the space robots currently planned by world wild space
agencies, an increase in the number and the capacity of robot applied in
space missions will be a foregone conclusion in the coming future to
fulfill the increasing demands of satellite maintenance, on-orbit as-
sembly and space debris removal etc [1,2]. Space robot exhibits some
special characteristics due to the dynamic coupling between the space
manipulators and the spacecraft (base). Accordingly, particular trajec-
tory planning techniques have to be developed to cope with the dy-
namic coupling issue of free-floating space robot.

Many methodologies and strategies of motion planning for single-
arm space robot have been proposed in the literature. Torres and
Dubowsky [3] derived the concept of Enhanced Disturbance Map
(EDM) as a heuristic trajectory planning method; nevertheless, the EDM
is hard to attain especially for the space robot with higher DOF. Yamada
and Yoshikawa [4] introduced a method of Cyclic Arm Motion (CAM)
using the feedback attitude error to regulate the base attitude con-
tinuously. Papadopoulos et al. [5] mapped the non-holonomic con-
straint to a space and employed polynomials to construct smooth and
continuous trajectories for planar free-floating space manipulator. Xu
et al. [6] presented a point-to-point path planning method using non-
holonomic characteristic of free-floating space robot, while the base

attitude and the end-effector's pose can be regulated synchronously.
Afterwards, Abad et al. [7] designed an optimal control scheme for
eliminating or minimizing base attitude disturbance, while the un-
certainties in the initial and final boundary conditions were considered.
In addition, in Ref. [8], Yoshida et al. employed the concept of Reaction
Null-Space (RNS) based reactionless manipulation to remove the time
loss and the velocity limit of manipulation both for kinematically non-
redundant and redundant space manipulators. Moreover, the RNS-
based trajectory planning method was also applied in Refs. [9,10] to
capture a tumbling target by using the momentum conservation law.
More recently, based on the constrained least-squares approach, a
Least-Squares-Based Reaction Control (LSBRC) method [11] was in-
troduced to locally minimize the dynamic disturbance transferred to the
spacecraft during trajectory tracking maneuver.

The above mentioned studies focus mainly on the motion planinig
with a single-arm robot. Nevertheless, when the orbital target does not
possess a grapple, the interception and capture may be very difficult. In
such cases, multi-arm robotic system which can increase the probality
of grasp and provide dexterous manipulation will be a reasonable al-
ternative. Accordingly, appropriate technical schemes have to be de-
signed to coordinate their motions. A dual-arm robotic system was in-
troduced in Ref. [12], where one of its arms tracks a pre-defined
trajectory, while the other arm works for minimizing the base attitude
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disturbance and optimizing the operational torque of the robotic
system. Miyabe et al. [13], used the hybrid position/force control and
the vibration suppression control and employed two flexible manip-
ulators to capture a spinning object in space. Alternatively, an
equivalent balance arm and its corresponding Dynamic Balance Control
(DBC) scheme [14] were designed to reduce the attitude disturbance
induced by the mission arm. Xu et al. [15] presented the coordinated
motion planning of a dual-arm space robot for capturing a target in
space. Shah et al. [16] proposed the strategy for point-to-point re-
actionless manipulation of the spacecraft mounted with the dual-arm
robotic system. More recently, Wang et al. [17] presents a synthesis
method of minimizing attitude disturbance, where DBC and RNS were
integrated into the framework of task-priority based solution using the
redundancy resolution of a space robot. James et al. [18] synthesized
the rapidly exploring random trees (RRT) with control-based sampling
and timescaling methods to construct reactionless maneuvering of a
space robot in pre-capture phase. It is worth noting that in the afore-
mentioned works, the existing coordinated motion planning methods of
space robot could be categorized as follows: 1) the generalized Jacobian
matrix (GJM) is employed without multi-objective optimization; 2)
applying pseudo-inverse of coupling inertia matrix to generate re-
actionless manipulation; 3) reconstruction the task-level reactionless
constraints in terms of end-effector velocities, but with the expense of
the tracking error for dependent variables; 4) synthesizing searching
and timescaling methods to generate reactionless manipulation. While
the coordinated trajectory planning of multi-arm space robot in joint-
space with multiple objectives is least explored in the literature.

The main motivation for this paper is to obtain a new coordinated
joint trajectory planning method for kinematically redundant manip-
ulators while cope with joint limits and anti-collision constraints with
different objectives. The reason for choosing kinematically redundant
manipulator is the existence of infinite solutions which can be em-
ployed to fulfil additional constraints, such as minimizing base attitude
disturbance, or collision avoidance, and so on. Bézier curve for its
simplicity and normalization is chosen to represent the shape of joint
trajectory and limit the values of joint range, velocity and acceleration.
Constrained PSO with adaptive inertia weight and stagnation handling
is implemented to search the optimal solution for constructing the
shape of the Bézier curve. The original contribution of this paper is the
construction of coordinated trajectory planning framework for dual-
arm space robot. Moreover, the present work is easily to extend to
different kinds of robots, like fixed-base manipulator, planar manip-
ulator, kinematically redundant multi-arm space robot, etc.

The paper is organized as follows: In Sec. 2 we formulate the tra-
jectory planning problem of the space robot as an optimization issue
under certain constraints. Kinematics and dynamics of dual-arm space
robot are introduced. In Sec. 3, cost functions and constraints employed
in coordinated trajectory planning issue are formulated. Moreover,
parameterization of joint trajectory using Bézier curve is presented and
integrated into the non-linear optimization issue. Sec. 5 shows the si-
mulation results of the proposed coordinated trajectory planning
method applied to kinematically redundant dual-arm. Finally, the
conclusive remarks are made in Sec. 6 at the end of this paper.

2. Problem formulation

The objective of coordinated trajectory planning for dual-arm space
robot is to generate applicable joint motion laws θ t( ) without violating
the imposed constraints to complete the desired manipulator tasks.
Normally, it can be formulated as a non-convex optimization issues, i.e.
minimize a specific objective θΓ( ) subject to a list of inequality con-
straints θg ( )i and equality constraints θh ( )i :

< = ⋯
= = ⋯

θ
θ

θ

t
g t i n

h t i n

minimize Γ( ( ))
subject to: ( ( )) 0, 1,2, ,

( ( )) 0, 1,2, ,
i ieq

i eq (1)

2.1. Kinematics and dynamics of space robot

Before discussion dual-arm space robot in detail, some symbols and
variables applied in the following sections are listed in Table 1. As
shown in Fig. 1, a dual-arm space robotic system is composed of a
spacecraft body (base) and two kinematically redundant manipulators
both with n DOF, there being +n2 1 bodies in total. Many investiga-
tions have been conducted in the field of multi-body dynamics. Refer to
[19,20], the dynamic equations of a space robotic system using the
Lagrangian mechanism can be expressed as follows:
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where ∈ẍb
6 is the vector of linear and angular accelerations of the

base, ∈θ̈a n and ∈θ̈b n represent joint accelerations of manipulator
a and b. For definiteness and without loss of generality, variables with
superscripts a and b denote that they are respectively related to the
manipulator a and b. For a free-floating space robotic system, there is
no external force and torque applied to the end-effectors ( = =f f 0e

a
e
b )

and to the base ( =f 0b ). The motions of the manipulators are governed
only by the internal torque on their joints. Hence, according to the
momenta conservation law, the linear momentum P0 and angular mo-
mentum L0 of the whole robotic system are conserved which can be
expressed by:
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Suppose the initial linear and angular momentum = =P L 00 0 , since
Hb is always invertible, the motion of the base can be described by
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By substituting Eq. (4) into the kinematic mapping of the end-ef-
fector a, = +x x θJ J˙ ˙ ˙

e
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b
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b e
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motion of the end-effectors can be given as follows
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where Jg is termed Generalized Jacobian Matrix (GJM) which was first
derived in Ref. [21] for single space manipulator. From Eqs. (4) and (5),

Table 1
Kinematic and dynamic symbols used in the paper.

symbols representation

J C,i i joint i and mass center of link i

∈a b,i i 3 position vector from Ji to Ci and from Ci to +Ji 1

∈rCi
3 position vector of mass center of link i

∈r r,b e 3 position vector of base and end-effector

∈ω ω,b e 3 angular velocity of base and end-effector

∈ ∈ ×m I,i i 3 3  mass and inertia matrix of link i

∈ ×Hb 6 6 inertia matrix of the base

∈ ×Hbm n6 coupling inertia matrix

∈ ×Hm n n inertia matrix of the manipulator

∈ ∈c c,b m n6  velocity dependent non-linear terms

∈f f,b e
6 force and moment exert on base and end-effector

∈τ n torque exert on manipulator joints
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one can see that the motion of the base and the end-effectors in free-
floating mode highly depends on the joint trajectories due to dynamics
coupling effect between the manipulators and the base. Therefore,
multiple objectives, such as performing end-effectors’ task, minimizing
base attitude disturbance or maximizing manipulability can be main-
tained with appropriate design of coordinated trajectory planning.

2.2. Orientation representation

For a redundant manipulator with dexterous workspace, orientation
representation like Euler angles or angle/axis is not sufficient since the
existence of orientation singularity [22,23]. The drawback of re-
presentation singularity can be overcome by the unit quaternion. Define
a quaternion = ∈ = + ⋅q ε rη{ , } cos sinφ φ4

2 2 , η is the scalar part and ε
is the vector part of the quaternion. r and φ are the unit vector and the
rotation angle along the vector r , respectively. The quaternion q is
constructed by + =ε εη 12 T . Note that q and − q represent the same
orientation. If =q εη{ , }1 1 1 and =q εη{ , }2 2 2 denote the quaternions cor-
responding to two rotation frames respectively, the relative quaternion
can be calculated as follows where * is the quaternion production op-
erator

= ∗ = + − −−ε q q ε ε ε ε ε εδη δ η η η η{ , } { , }͠1 2
1

1 2 1
T

2 2 1 1 2 1 2 (6)
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Note that when =εδ 0 implies that the two rotational frames coin-
cide. The relationship between the angular velocity ω and the time
derivative of the quaternion q is
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3. Coordinated trajectory planning

As illustrated in section 2, a coordinated trajectory planning

algorithm is a non-convex optimization issue, which should have the
following features:

• The specified objectives should be optimized under feasible regions;

• The continuity of the joint position, velocity should be guaranteed;

• Undesirable effects during motion should be minimized.

3.1. Cost functions

Not like manipulator with fixed base, non-holonomic characteristic
of free-floating space robot should be taken into account in the co-
ordinated trajectory planning scheme. Accordingly, the final pose of the
space robot not only relies on its inverse kinematics, but also depends
on the dynamics coupling effect between the robotic arms and the base.
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The relative difference between the final pose and the desired pose
both for base and end-effector is given by
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The determination of the joint trajectories requires the final pose of
the end-effector achieves its desired pose as much as possible

=θ xt δΓ( ( )) e Q (13)

where ⋅ represents the norm of the vector, Q is a non-negative definite
weight matrix. Except the end-effectors’ manipulation task, for kine-
matically redundant space manipulators, additional cost functions
should be defined for other specific reasons [24]. For instance, large
orientation disturbance to the base is not expected during the motion of

Fig. 1. Schematic diagram of space robot.
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the space manipulators since the requirements of communication and
observation. A cost function that defines the minimum disturbance to
the base can be given by

=θ xt δΓ( ( )) b Q (14)

One can also define the total joint angle change as a cost function
when drastic joint variations are not expected:

∫= −θ θ θt dtΓ( ( ))
t

t s
Q

s

f

(15)

Here θs is the initial configuration of the space manipulators. In
addition, maximum manipulability of space manipulators is normally
required at the final stage, one can define the following cost function

=θ θ θt J JΓ( ( )) det( ( ) ( ))f fT (16)

where J is manipulator's Jacobian matrix, which is derived from the
configuration of the space manipulators and can be chosen Je or Jg
according to the flying mode. In this paper, Jg is applied to calculate the
manipulability due to the free-floating mode. Additionally, other cost
functions can also be defined for the coordinated trajectory planning,
such as the end time [25], the distance from collisions [26], or the
actuation energy [24], and so forth.

3.2. Constraints

The solution of trajectory planning problem is to generate appro-
priate motion laws for each joint yield the following equality and in-
equality constraints
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θs is the start configuration of space robot and xb
s, xe

s is the initial pose
of the base and end-effector, respectively. In Eq. (17), equalities de-
scribe the initial and final constraints on joint and end-effector position,
velocity and acceleration, while inequalities delineate the capability of
each joint.

Another issue that has to be considered in the coordinated trajectory
planning is possible collision both with the environment and of the
manipulators with itself. To detect collision and to formulate the anti-
collision issue within a non-linear programming context, bodies are
depicted here as convex polyhedrons and enveloped by tight-fitting
bounding volumes to minimize the computational requirements
[27,28]. For this purpose, the moving bodies consist of capsules to re-
present the manipulator links and of boxes to represent the base and
target. The anti-collision problem can be formulated straightforwardly
as a set of inequalities

> = ⋯θd t i n( ( )) 0.0 1,2, ,i coll (18)

where the function di represents a minimum distance between two
moving bodies, the scalar ncoll is the number of body pairs in the given
problem.

3.3. Parameterization of the trajectories

The aforementioned optimization issue in Eq. (1) is solved as a non-
linear programming problem with imposed equality and inequality
constraints. Each joint trajectory θ t( )i is parametrized by Bézier curve
which is widely used in computer graphics to model smooth curves
[29,30]. In this paper, fifth-order Bézier curves are employed to de-
scribe the ith joint trajectories in order to allow for smoothness up to the
fourth derivative
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The joint velocity and acceleration boundaries in Eq. (17) can be
satisfied through determination of the execution time T by the fol-
lowing expression
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dτ and =θ̈ θd
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2 . Substituting the equality constraints in

Eq. (17)–(20)
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Since θi
s is already known, the Bézier curve only relies on one

parameter Pi5. Define = ⋯p P P[ , , ]n15 2 5
T as design variables, once p is

determined, each joint trajectory is solved accordingly. Consider Eqs.
(4) and (5), the pose of base and end-effector (ignoring superscript a
and b) can be derived as
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Consequently, the trajectory planning issue expressed in Eq. (1) can
be transformed to
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4. Particle swarm optimization

PSO is a stochastic search method but with a simpler philosophy. It
was inspired by the coordinated motion of swarmed animals like flying
birds, swimming fishes, and so forth [31]. The states of each particle
adjust in swarm takes into account the effect of stochastic, cognitive
and social influence. A schematic diagram of the PSO with 6 particles is
shown in Fig. 2.

4.1. Basic PSO algorithm

According to the illustration in section 3.3, the design variables are
the position vector p. Suppose the position and velocity of the jth

particle are presented by = ⋯p p p p( , , , )j j j j n1 2 2 and = ⋯v v v v( , , , )j j j j n1 2 2 ,
respectively. Their update can be expressed as follows as determined by
PSO algorithm:

⎧
⎨
⎩

= + − + −

= +
( )( )v wv c r p p c r p p

p p v
jk jk b jk g jk

jk jk jk

1 1 2 2jk j

(26)

where c1, c2 are acceleration constants and r1, r2 are the uniformly
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Fig. 2. Schematic diagram of PSO with 6 particles.

Fig. 3. The flow chart of PSO algorithm for coordinated trajectory planning.
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distributed value between [0,1]. The vector = ⋯( )p p p, ,pbest b bj j j n1 2 stores

the local best position of the jth particle so far and = ⋯( )p p p, ,gbest g g n1 2
represents the global best position of the swarm so far. The role of in-
ertia weight w is considered critical for the PSOs convergence behavior.
The inertia weight is employed to control the impact of the previous
history of velocities on the current one [32]. Accordingly, the para-
meter w regulates the trade-off between the global (wide-ranging) and
local (nearby) exploration abilities of the swarm. A large inertia weight
facilities global exploration (searching new areas), while a small one
tends to facilitate local exploration, i.e. fine-tuning the current search
area. A suitable value for the inertia weight usually provides balance
between global and local exploration abilities and consequently results
in a reduction of the number of iterations required to locate the op-
timum solution. In this paper, a linear decreasing strategy on w is
employed:

= + − −w w w witer iter
iter

( )min
max

max
max min

(27)

where itermax is the maximal number of iterations. wmin and wmax are the
lower and upper bound of the inertia weight, respectively. From Eq.
(26), the update velocity of the jth particle is consisting of three com-
ponents: a momentum of its previous velocity, velocity increments ac-
cording to its local best and global best position. Eventually, the

Fig. 4. The framework for space robot coordinated trajectory planning.

Table 2
Kinematic and dynamic parameters of space robot.

Base Manipulator a and b

Joint1 Joint2 Joint3 Joint4 Joint5 Joint6 Joint7

α, deg – – 0/0 −90/90 90/-90 90/-90 90/-90 −90/90 90/-90
a, m – – 0.0 0.0 0.0 0.0 0.0 0.0 0.0
d, m – – 0.128 0.168 1.450 0.168 1.290 0.168 0.440
θ, deg – – θ1 θ2 θ3 θ4 θ5 θ6 θ7

Link1 Link2 Link3 Link4 Link5 Link6 Link7

m, kg 200 3.0 8.0 2.0 6.0 2.0 2.0 4.0
Ixx 63.24 0.004 1.382 0.005 0.871 0.005 0.005 0.065
Iyy 83.92 0.004 0.026 0.006 0.019 0.006 0.005 0.065
Izz 84.68 0.010 1.382 0.005 0.871 0.005 0.006 0.013
ai,m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 −0.7 0.0 −0.6 0.0 0.0 0.0
0.0 0.0 0.064 0.084 0.09 0.084 0.09 0.084 0.168

bi,m 2.52 2.52 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.32 0.32 0.084 −0.66 −0.084 −0.46 0.084 −0.09 0.0
0.0 0.0 0.128 0.0 0.0 0.0 0.0 0.0 0.188

Fig. 5. The description of the Pareto front.
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position of the particle is renewed with its previous position and new
displacement induced by the new velocity.

4.2. Constraints and stagnation handling

In order to choose the local and global best particles in each opti-
mization round, fitness function is employed in PSO to evaluate the
quality of each particle in swarm and drive them to the target stepwise.
How to choose the fitness function depends on the robot type, required
space missions and the optimized objectives. In this paper, the fitness
function can be designed as minimizing the end-effector's pose error,
minimizing the base attitude disturbance, or maximizing manipul-
ability as illustrated in section 3.1. Due to the existence of the dual-
arm's redundancy resolution, a good choice for the fitness function is

∑= +p x pδΓ( ) Γ ( )e
i

iQe
(28)

One issue that encounters in PSO is the practical constraints im-
posed to the design variables as illustrated in Eqs. (17) and (18). Var-
ious constraints handling strategies, such and penalty function and re-
pair algorithms, can be adopted to cope with constraints in PSO [33].
To deal with constraints, only feasible pgbest is considered, while pre-
serving the exploration and exploitation behavior of the swarm. In our
method, the global best position pgbest is chosen as the best feasible
ppbestj and the concept of constraint domination [34] is used to update
the local best position ppbestj. According to the amount of constraint
violation, this constraint handling strategy enables the exploitation of
“better unfeasible” optimization solutions to maintain the aforemen-
tioned behavior. Refer to Eqs. (17) and (18), the amount of constraint
violation can be expressed by

∑= − + −
=

( )( ) ( )p θ θ θ θΦ( ) max 0, max 0,p pj
i

n

max
i

max
i

min
i

min
i

1

2

, ,j j (29)

Fig. 6. The joint motion laws and pose change of end-effectors and base for case 1.
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where θmin
i and θmax

i are the minimal and maximal allowed position of
the ith joint, θp min

i
,j

and θp max
i

,j
are the encountered minimal and max-

imal allowed position of the ith joint corresponding to pj, respectively.
Another issue that encounters in PSO is the stagnation of the swarm

when no improvements of ppbestj and pgbest are taking place. After a fixed
number of optimization steps, the change rate of the fitness function
remains lower than a given threshold near zero. Some strategy have to
be employed to handle such a case [35]. The particle swarm is ran-
domly split in two sub-swarms ∈Ss s, {1,2} of equal size and initialized as
follows

⎧
⎨⎩

+ = + ⋅ − ∈
+ = + ⋅ ∈

p p p

p

c rand S

w w c rand S

(iter 1) (iter) ( 1,1) if

(iter 1) (iter) (0,1) if
j gbest j

j

3 1

4 2 (30)

The initialization of the design variables p in sub-swarms will
provide additional chance to approach the global optimal solution,
which increases the successful rate of finding optimal solution. c3 and c4
are two weighting scalars which are employed to regulate the swarm
distribution near pgbest and searching velocities near ppbestj, respectively.
rand a b( , ) is a normal distributed random number between a and b.

Fig. 3 depicts the flow chart of the coordinated trajectory planning
algorithm proposed in this paper. Each optimization round begins with
p1 and ends with pnp. At the first optimization round, the whole swarm
is initialized with uniformly random distributed values. A solution is
found if for a =p pj

*, the desired fitness function ≤p εΓ( )* is satisfied.
Otherwise, the particle pj will be updated according to Eq. (26) for the
next optimization round. In summary, the coordinated trajectory
planning framework for multi-arm space robot with multi-constraint
can be shown in Fig. 4.

5. Simulation results

In this section, we present four case studies to verify the perfor-
mance of the proposed dual-arm space robot motion strategies. The

space robotic system is composed of two 7-DOF kinematically re-
dundant manipulators and a 6-DOF spacecraft base, as shown in Fig. 1.
We assumed the initial linear and angular momenta to be =P 00 and

=L 00 . The kinematic (Denavit–Hartenberg parameters) and dynamic
parameters of the dual-arm space robot are listed in Table 2, where ai,
bi, and Ii are expressed in its own body frames. The flow chart of the
proposed algorithm is shown in Fig. 3. During the processing, the PSO
algorithm first finds the optimal solution to construct the Bézier curve,
after that, the execution time T is determined according to Eq. (21) to
fulfil the imposed joint-velocity and acceleration constraints. The joint
trajectory can be determined accordingly. In order to verify the effec-
tiveness of the proposed method, four case studies will be investigated
by numerical simulations. The involved parameters of the PSO algo-
rithm are listed as follows:

= = = =
= = = =

n c c
c c w w

25; iter 2000; 1.496;
1.326; 1.852; 0.7298; 0.4;

p max

max min

1 2

3 4 (31)

5.1. Simulation case 1

In the first simulation, the end-effectors of manipulator a and b are
commanded to move to grapple points on the target satellite form their
initial pose as follows

= ⎛
⎝

− ⎞
⎠

→

= − −

θ xπ π π0,
3

, 0,
4

, 0,
12

, 0

(2.950, 1.505, 0.168, 0.5, 0.5, 0.5, 0.5)

as
e
as

= ⎛
⎝

− − ⎞
⎠

→

= − − −

θ xπ π π0,
3

, 0,
4

, 0,
12

, 0

(2.950, 1.505, 0.168, 0.5, 0.5, 0.5, 0.5)

bs
e
bs

The initial pose of the base is =x (0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0)b
s .

The final pose of the end-effectors can be determined according to the

Fig. 7. Linear and angular momentum conservation for case 1.
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relative pose of the target's grapple points and the end-effectors, which
can be expressed as follows

= − −x (4.271, 0.365, 0.168, 0.612, 0.612, 0.354, 0.354)e
af

= − − −x (4.271, 0.365, 0.168, 0.612, 0.612, 0.354, 0.354)e
bf

Refer to Eq. (22) and considering the limits of joint range in (17), it
shows that ∈p θ θ[ , ]min max . The fitness function in Eq. (28) is employed
to evaluate each particle in the swarm without considering other spe-
cific objectives. The determination of Qe depends on the position and
orientation accuracy requirements. In this paper, the admitted position
error is set to 0.01m and attitude error is ∘2 , the weight matrix Qe can
be determined as follows:

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥( )

Q
E

E

0

0e

1
0.01 3 3

3
1

sin
3π

180 (32)

The proposed trajectory planning algorithm stops when the con-
vergence criteria are satisfied ≤ =p εΓ( ) 1.0* without violating any
imposed constraints. PSO algorithm successfully found a solution

=p* (1.307, −0.989, −0.772, −1.465, 1.543, −0.729, −0.529,
−1.342, 0.992, 0.850, 1.715, 1.325,−0.765,−2.154) that fulfil all the
constraints. The execution time =T 30s is determined by Eq. (21). In
terms of the searching solution p* and the execution time T, the joint
motion laws and the corresponding pose change of the end-effectors
and the base are shown in Fig. 6. It is noteworthy that the orientation
representation of the base is Z-Y-X Euler angles α β γ[ , , ] for intuitional
reasons. One can see that with the designed joint motion, both end-
effectors successfully converged to the desired pose. The final errors of

Fig. 8. The joint motion laws and pose change of end-effectors and base for case 2.
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the system states are =xδ e
a (0.047, 2.026, −1.014, 0.550, −0.895,

−1.761)× −10 3 and =xδ e
b (-1.760, 7.792, −7.613, −0.870, −3.132,

−1.542)× −10 3. As shown in Fig. 5, the manipulability in case 1 is equal
to 12.664. The solution of case 1 gives a smaller value of the manip-
ulability than those in case 2 and case 3, since maximizing the end-
effectors’ manipulability is not considered in case 1. In fact, there are
infinite solutions since the existence of the kinematic and non-holo-
nomic redundancy where the chosen p* is just one of them. This solu-
tion can be used as an initial feasible solution for the purpose of sub-
sequent optimization. Additionally, since the coordinated trajectory
planning method is designed in free-floating mode, refer to Eq. (3), the
linear and angular momentum of the entire space robotic system are
conserved. As one can see from Fig. 7, refer to Eq. (3), the linear mo-
mentum =P P P P[ , , ]x y z0

T and angular momentum =L L L L[ , , ]x y z0
T

obtained from the summation of θH ˙
bm
a a, θH ˙

bm
b b and xH ˙b b were con-

served during the joint motion from its initial to the final configuration.

5.2. Simulation case 2

In the second and the third simulation, the end-effectors are re-
quired to approach the target grapple points as case 1 but with addi-
tional objectives. The complete solution for simulation 2 includes not
only approaching to the target, but also maximizing the end-effectors’
manipulability which makes it a multiple objectives optimization issue.
Two objectives are included in this simulation while approaching to the
target is the pre-emptive one. 100 solutions as in case 1 were first ob-
tained and the solution for the second objective was selected from this
pool. The optimal solution for both end-effectors’ approaching mission
and maximizing end-effectors’ manipulability is =p* (1.211, −0.792,
−0.323, −1.964, −1.560, 1.060, 2.010, −1.527, 1.502, −2.343,
−2.112, −1.998, −1.219, −2.359), while the total manipulability

J Jdet( )T is 25.481. The final errors of the system states are
=xδ e

a (0.696, 0.474, 4.245, 0.010, 0.397, 0.282)× −10 3 and =xδ e
b (-5.082,

Fig. 9. The joint motion laws and pose change of end-effectors and base for case 3.
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3.277, −3.363, −0.488, −0.179, −0.411)× −10 3. Fig. 8 gives out the
history of all joint motions and related change of the end-effectors and
the base. One can see that with the designed joint trajectories, both end-
effectors successfully approaches to the required pose while the ob-
jective of maximizing end-effectors’ manipulability is obtained. As the
space robot is having the degree-of-redundancy as 2, it may not be al-
ways possible to minimize base reaction and maximize manipulability
synchronously. Trade-off has to be done to modulate multi-objectives
which will be illustrated in simulation case 3.

5.3. Simulation case 3

In the third simulation, both minimizing the base orientation dis-
turbance and maximizing the final manipulability are required as ad-
ditional objectives. As shown in Fig. 5, the relationship between base
orientation disturbance and manipulability is conflicting.

Consequently, it is not possible to reach an optimal solution with re-
spect to both of the objectives evaluated individually. Attention has to
be paid to the concept of Pareto optimality and Pareto front [36]. A
linear combination of the two required objectives as expressed in Eq.
(28) is employed to evaluate the fitness function. The optimal solution
for case 3 is =p* (0.050, −1.007, 0.272, −1.353, 0.670, −1.407,
−0.424, 0.044, 0.737, −0.397, 1.278, −0.717, 1.342, 0.551). The
corresponding manipulability of both manipulators is 17.765 and the
total base orientation disturbance is ∘3.652 . The final errors of the
system states are =xδ e

a (0.047, 2.026, −1.014, 0.550, −0.895,
−1.761)× −10 3 and =xδ e

b (-1.760, 7.792, −7.613, −0.870, −3.132,
−1.542)× −10 3. Fig. 9 shows the history of all joint motions and related
change of both end-effectors and the base. It is shown that the magni-
tude of the base orientation disturbance is smaller in case 3 when
compared to Figs. 6 and 8, because minimizing the base attitude dis-
turbance is not taken into account in case 1 and case 2. Moreover, due

Fig. 10. The joint motion laws and pose change of end-effectors and base for case 4.
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to the trade-off between the manipulability and the base attitude dis-
turbance, as shown in Fig. 5, one can note that the manipulability in
case 3 is bigger than that in case 1, but smaller than that in case 2
according to the qualitative analysis. The chosen cost function affects
the solution of optimization and eventually influences the final pose of
space robotic system.

5.4. Simulation case 4

In order to verify the feasibility and effectiveness of the proposed
method, we provided another simulation case with different config-
urations and final pose of the end-effectors:

Fig. 11. Simulation results of trajectory planning with nonzero final velocity.
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= ⎛
⎝

− ⎞
⎠

→

= − −

θ xπ π π0,
3

, 0,
4

, 0,
12

, 0

(2.950, 1.505, 0.168, 0.5, 0.5, 0.5, 0.5)

as
e
as

= ⎛
⎝

− − ⎞
⎠

→

= − − −

θ xπ π π0,
3

, 0,
4

, 0,
12

, 0

(2.950, 1.505, 0.168, 0.5, 0.5, 0.5, 0.5)

bs
e
bs

= − −x (4.168, 0.365, 0.615, 0.653, 0.561, 0.271, 0.430)e
af

= − − − −x (4.255, 0.365, 0.291, 0.561, 0.653, 0.430, 0.271)e
bf

The initial pose of the base is xb
s = (0.0,0.0, 0.0, 1.0, 0.0, 0.0, 0.0).

The fitness function is Eq. (28) is employed to evaluate each particle in
the swarm without considering other specific objectives. The proposed
trajectory planning algorithm stops when the convergence criteria are
satisfied and finds a solution =p* (1.699, −1.777, 1.983, 1.606,
−2.601, −0.344, 0.792, −0.180, 0.608, −0.370, 1.293, −0.850,
1.190, −0.013) that fulfil all the constraints. The execution time

=T 30s is determined by Eq. (21). The joint motion laws and the cor-
responding pose change of the end-effectors and the base are shown in
Fig. 10. One can see that with the designed joint motion laws, both end-
effectors of the space robot converged to their desired final pose with
required accuracy.

When the nonzero final velocity of the end-effectors is required, in
order to apply the proposed trajectory planning method, the following
assumptions should be added in our manuscript: 1) the final joint ve-
locities should be provided beforehand; 2) the execution time T should
be given in order to fulfil the terminal end-effectors velocity con-
straints. When θ̇ f and T are given, substitute the initial and final con-
straints into Eq. (20), one can obtain

⎧
⎨
⎩

= = =

= + = −

P P P θ

P P θ P P P˙ , 2

i i i i
s

i i
T
m i

f
i i i

0 1 2

4 5 3 4 5

Note that above constraints differ from Eq. (22) due to the in-
troduction of nonzero final velocity of the end-effectors. In fact, =P θi i

f
5

is a design variable to be determined by the optimization algorithm,
since θi

s, θ̇i
f and T are already known. The Bézier curve only relies on

one parameter Pi5. Define = ⋯p P P[ , , ]n15 2 5
T as design variables, once p

is determined, each joint trajectory is solved accordingly. The co-
ordinated trajectory planning can still be transformed to an optimiza-
tion issue as illustrated in Eq. (25). For sake of demonstration, we
provided another simulation case with same initial condition as before,
but with different final states of both end-effectors:

= − −x (4.271, 0.365, 0.168, 0.612, 0.612, 0.354, 0.354)e
af

= − − −x (4.271, 0.365, 0.168, 0.612, 0.612, 0.354, 0.354)e
bf

= −θ̇ (0.0, 0.04, 0.0, 0.05, 0.0, 0.03, 0.0)af

= − −θ̇ (0.0, 0.04, 0.0, 0.05, 0.0, 0.03, 0.0)bf

The execution time is set to =T 40s to construct the joint trajec-
tories. The fitness in Eq. (28) is employed to evaluate each particle in
the swarm without considering other specific objectives. The optimal
solution for this simulation case is =p* (-0.716,−0.811,−1.392, 1.592,
0.719, 1.674, 1.419, 0.130, 1.525, −0.307, 1.642, −0.646, 1.539,
0.704). Fig. 11 gives out the history of all joint motions and related
change of the end-effector and the base. One can see that with the
designed joint trajectories, both end-effectors successfully approach to
the required pose with prescribed final joint velocity. Conclusively, the
generated joint trajectories for all four cases are smooth and applicable
to the control of the space robot, which satisfy the requirements listed
in Section 3.2.

6. Conclusions

Due to the dynamics coupling effect between the spacecraft and the
manipulators, the determination of the end-effector pose not only relies
on the current joint position, but also on the history motion of each
joint. Therefore, the given end-effector pose can not be handled only by
inverse kinematics algorithm as fixed base manipulator. The main
features of this paper can be listed as follows:

(1) The non-holonomic property of the free-floating space robot is
considered and two kinematically redundant manipulators are
employed for further optimization. Moreover, since the forward
kinematics is applied without inversion of Jacobian matrix, the
kinematics and dynamics singularities of space robot will not affect
the joint motion during the whole trajectory time.

(2) Joint trajectories are parametrized by the Bézier curves for its
simplicity and normalization. A constrained PSO algorithm with
adaptive inertia weight and stagnation handling strategy is adopted
to search for optimal solutions to construct the joint parameterized
curve.

(3) A coordinated trajectory planning framework is implemented
which can be employed to generate rational motion laws for kine-
matically redundant space robot with multi-objective and multi-
constraint.

The simulation results demonstrates that the proposed method can
be used to maximize the manipulability to the end-effectors or perform
optimization with multiple objectives according to various cost func-
tions. The coordination control of dual-arm space robotic system with
mass change and structure flexibility would be one of our future work.
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