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We clarify the map between boundary perturbations of AdS3 in general relativity, and exactly marginal
worldsheet vertex operators in AdS3 string theory with Neveu–Schwarz Neveu–Schwarz flux. The latter
correspond to solutions of the higher derivative low-energy tree level effective action to all orders in
the string length over the curvature radius. We calculate the exact expression of the boundary energy–
momentum tensor including all these higher derivative corrections in a purely bosonic string theory.
The bottom-line is a canonical shift in the normalization of the boundary energy–momentum tensor
corresponding to a shift in the curvature radius over the string length squared by the dual Coxeter
number of the SL(2,R) subalgebra of the space–time Virasoro algebra. That allows us to propose a value
for the Brown–Henneaux central charge including all tree level higher derivative corrections in bosonic
string theory, in a scheme dictated by the worldsheet conformal field theory.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A quantum theory of gravity on AdS3 with boundary conditions that allow for black hole configurations, has an asymptotic symmetry
algebra which includes a (left and right copy of the) Virasoro algebra [1]. The algebra of diffeomorphism charges is centrally extended as
shown through a Hamiltonian analysis in classical general relativity [1]. An alternative way to compute the central charge is through the
holographic calculation of the Weyl anomaly [2].

String theory in AdS3 is a consistent theory of quantum gravity that is likely to have a holographic dual. When we allow for black
hole configurations in the bulk, the asymptotic Virasoro algebra is part of the symmetry algebra. Indeed, the space–time Virasoro algebra
was explicitly constructed in terms of operators in the worldsheet conformal field theory in the case of AdS3 backgrounds with Neveu–
Schwarz Neveu–Schwarz flux [3–6], as well as in the case of backgrounds with Ramond–Ramond flux [7]. These constructions within the
string worldsheet conformal field theory contain an infinite set of tree level higher curvature corrections to the classical general relativity
analysis.

In this brief note, it is our aim to provide the necessary calculational details on the construction of the boundary energy–momentum
tensor that takes into account all these higher derivative corrections in the context of bosonic AdS3 string theory with pure NSNS flux. This
allows us to speculate on an exact tree level value for the Brown–Henneaux central charge within an expansion scheme which is natural
from the point of view of the worldsheet description of the string theory. Thus, we illustrate the power of an exact classical solution to
string theory to determine all higher curvature corrections to a physical quantity, in the absence of supersymmetry.

2. The boundary energy–momentum tensor

In the holographic AdS/CFT correspondence [8–10] the conserved boundary energy–momentum tensor couples to the massless graviton
in the bulk. In the first subsection we briefly review how we solve for the bulk deformation that corresponds to introducing a source term
for the boundary energy–momentum tensor in the context of general relativity. In Sections 2.2 and 2.3, we show how to include all tree
level higher derivative corrections in the context of string theory on AdS3 with Neveu–Schwarz Neveu–Schwarz flux.
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2.1. Metric perturbations

We choose a gauge in which the radial components of the graviton at the boundary are zero, and we solve the bulk equations of motion
for the graviton with boundary condition ĥab for the spatial components of the metric. For a two-dimensional boundary the perturbative
solution to Einstein’s equations with negative cosmological constant is given by [11,12]:

hμν

(
x0, xi) = 3

π

∫
d2x′ 1

|x − x′|4 Jμi
(
x − x′) Jν j

(
x − x′)Pijabĥab

(
x′

i

)
, (2.1)

where we work in the Poincaré coordinates with background metric:

ds2 = 1

x2
0

(
dx2

0 + dx2
i

)
(2.2)

and where we used the definitions:

Pijab = 1

2
(δiaδ jb + δ jaδib) − 1

2
δi jδab, Jμν(x) = δμν − 2xμxν

|x|2 ,
∣∣x − x′∣∣2 = x2

0 + ∣∣xi − x′
i

∣∣2
. (2.3)

We use the conventions of [11] in which all the indices of the tensor P are contracted with the flat boundary metric. On the basis of
this perturbative solution and the equality between the renormalized gravity action and the boundary generating functional of correlation
functions, we can compute the boundary energy–momentum two-point function in the gravity approximation [11,12].

It will be useful to express the metric perturbation in terms of the following coordinates:

ds2 = dφ2 + e2φ dγ dγ̄ . (2.4)

When we concentrate on a source-term for the γ γ component of the boundary-energy–momentum tensor only, we can write the bulk
gravity solution after perturbation as:

hγ̄ γ̄ = 3

π

∫
d2γ

e−4φ

|x − γ |8 ĥγ̄ γ̄ , hγ γ = 3

π

∫
d2γ

(γ̄ − x̄)4

|x − γ |8 ĥγ̄ γ̄ , hγ̄ γ = − 3

π

∫
d2 γ e−2φ(γ̄ − x̄)2 1

|x − γ |8 ĥγ̄ γ̄ ,

hφγ = 6

π

∫
d2γ

e−2φ(x̄ − γ̄ )3

|x − γ |8 ĥγ̄ γ̄ , hφγ̄ = 6

π

∫
d2γ

e−4φ

|x − γ |8 (γ̄ − x̄), hφφ = 12

π

∫
d2γ

e−4φ(γ̄ − x̄)2

|x − γ |8 ĥγ̄ γ̄ , (2.5)

where γ , γ̄ are the complexified boundary coordinates and |x−γ |2 = e−2φ + (x−γ )(x̄− γ̄ ) is a measure for the distance squared between
a point in the bulk and one on the boundary.

2.2. Embedding in AdS3 string theory

We want to generalize the above result to include all (tree level) higher derivative terms in the low-energy effective action in the
context of bosonic string theory on AdS3 with Neveu–Schwarz Neveu–Schwarz flux. To that end, we wish to recall the exactly marginal
operator corresponding to the metric deformation reviewed in the previous subsection. The fact that we deal with a solvable worldsheet
conformal field theory is the key to allow for an inclusion of all tree level higher derivative corrections.

We closely follow the paper [5] and refer to it for many useful concepts, technical details, as well as our notation. We recall that we
have a left holomorphic worldsheet current algebra J a as well as right anti-holomorphic current algebra J̄ a , which can be conveniently
packaged in x-dependent currents:

J (x; z) = e−x J−0 J+(z)ex J−0 = k
(
(x − γ )2e2φ∂γ̄ + 2(x − γ )∂φ − ∂γ

)
,

J̄ (x; z) = e−x̄ J̄−0 J̄+(z̄)ex̄ J̄−0 = k
(
(x̄ − γ̄ )2e2φ∂̄γ + 2(x̄ − γ̄ )∂̄φ − ∂̄ γ̄

)
. (2.6)

We also introduce the primary vertex operator Φ1 of worldsheet conformal dimension zero, and space–time conformal dimension one
(which is also known as the bulk-to-boundary propagator for a massless scalar field):

Φ1 = 1

π

1

(|γ − x|2eφ + e−φ)2
. (2.7)

The derivative of the bulk deformation computed above in ordinary gravity with respect to the boundary metric component ĥγ̄ γ̄ gives rise
to a certain bulk deformation which corresponds to the naive boundary energy–momentum tensor. The metric components that code the
bulk deformation, and therefore the boundary energy–momentum tensor, correspond to the following worldsheet vertex operator (as can
be derived by combining equations (2.5), (2.6) and (2.7)):

T (x) ≈ 1

2k

∫
d2z

(
J∂2

x Φ1 + 3∂x J∂xΦ1 + 3∂2
x JΦ1

)
J̄ (x̄; z̄). (2.8)

The result of our canonical derivation agrees with the proposal of [5] to which we refer for many more interesting observations. In
the worldsheet model, the worldsheet vertex operator is exactly marginal, and it is a physical vertex operator [5]. Our derivation of the
vertex operator in the context of general relativity does not yet take into account possible higher derivative corrections to the boundary
energy–momentum tensor T (x), and we still need to accurately define the composite operator in the quantum theory on the worldsheet.
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2.3. The space–time energy–momentum tensor

In this subsection, we wish to calculate the correct normalization of the boundary energy–momentum tensor, in the presence of all
higher derivative terms coded in tree level string theory. An elementary argument for the need to modify formula (2.8) runs as follows.
In bosonic string theory, when the worldshseet SL(2) current algebra has level k, the worldsheet energy–momentum tensor has prefactor
1/(k − 2) (see e.g. [13] for a review). The conformal dimensions of primary operators similarly have a 1/(k − 2) dependence. Therefore, the
bulk masses of states will be a function of k−2, and the boundary conformal dimensions as well. Thus, the space–time energy–momentum
tensor is expected to depend on the level in the combination k − 2.

That is one way to argue for the proposal for the exact boundary energy–momentum tensor:

T (y) = 1

2(k − 2)

∫
d2z

(
∂2

x Φ1 J + 3∂xΦ1∂x J + 3Φ1∂
2
x J

)
J̄ (x̄; z). (2.9)

In the above, we mean an exact equality between the (canonically normalized) boundary-energy–momentum operator and the normal
ordered composite operator on the right (where the components of the composite operator are ordered as indicated). The normal ordering
in the two-dimensional chiral conformal field theory is the one described for instance in [13], which consists of subtracting singularities
in the OPE evaluated at the location of the second operator. We also introduce the operator:

C = − 6

k − 2

∫
d2z (Φ1 J J̄ )(z, z̄) (2.10)

and recall [5] that its derivatives with respect to either x or x̄ decouple from all worldsheet correlation functions (since it is a total
derivative operator without singularities when it encounters physical insertions on the worldsheet). Using this fact, we can write an
equivalent expression for the boundary energy–momentum tensor:

T (x) = 1

2(k − 2)

∫
d2 w

(
∂xΦ1∂x J + 2Φ1∂

2
x J

)
J̄ (x̄; z). (2.11)

To prove that this is the canonically normalized boundary energy–momentum tensors to all orders in higher derivative corrections, i.e. to
all orders in a 1/k expansion, it is sufficient to compute the operator product of the boundary energy–momentum tensor T with itself.

2.3.1. The T T operator product
An important operator equation in the following calculations is:

∂Φ1 = 1

k − 2
∂x( JΦ1), (2.12)

which arises from the fact that the action of ∂ on the primary operator Φ1 is equivalent to the action of the worldsheet Virasoro
generator L−1 which can be computed via the worldsheet energy–momentum tensor which is the Sugawara bi-linear in the currents.
The normalization of the energy–momentum tensor is 1/(k − 2) for a level k current algebra.1 Using a similar equation for deriving with
respect to x̄, we obtain the result:

∂x̄T (x) = 1

2i

∮
dz

(
∂xΦ1∂x J + 2Φ1∂

2
x J

)
. (2.13)

From now on, we again follow [5] closely and compute the operator product ∂x̄T (x)T (y). Our calculation is an interesting space–time
analogue of the calculation of the shift in the level of the worldsheet energy–momentum tensor. Since it is a little intricate, we produce
it here in some detail. Let’s split up the calculation in several parts.

2.3.2. Preparation
We will make good use of the OPEs2 between the currents and the primary fields:

J (x; z) J(y; z) ∼ k
(x − y)2

(z − w)2
+ 1

z − w

(
(x − y)2∂y − 2(y − x)

)
J (y; w),

J (x; z)Φh(y; w) ∼ 1

z − w

(
(x − y)2∂y + 2h(y − x)

)
Φh(y; w), (2.14)

as well as all of their derivatives with respect to both x and y. These operator products code the chiral current algebra as well as the
affine primary nature of the operator Φh of space–time dimension h [5]. Note that although the product J(x; z)Φh(y; w) is regular at
x = y [5], that is not true for various derivative operators. Composites of derivative operators therefore do require normal ordering. As
stated previously, we take the derivative operators appearing in the proposed energy–momentum tensor (2.9) to be normal ordered in the
order indicated. We also recall the regular operator product:

Φ1(x; z)Φh(y; w) = δ(x − y)Φh(y; w) + O (z − w) (2.15)

which was conjectured in [5] and proven in [14] (given our normalization of the vertex operators).

1 Our equation differs from Eq. (4.15) in [5] at higher orders in the 1/k expansion. That leads to a canonically normalized space–time energy–momentum tensor. For the
superstring, and worldsheet supersymmetric sigma-model discussed from Section 8 onwards in [5], their Eq. (4.15) becomes exact. In a purely bosonic context, it is a good
semi-classical approximation.

2 We use the conventions of [5] and refer to that reference for further definitions and details.
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2.3.3. The space–time primaries
In order to show that the operator Φh(x; z) is indeed a space–time primary of dimension h, we wish to compute the operator product

expansion Φh(x; z) · ∂ ȳ T (y). The calculation below should be thought of as talking place inside a space–time correlation function. We
compute the contribution due to the region where the operator T comes close to the operator Φh on the worldsheet. See [5] as well
as [15] for a detailed discussion of why this is sufficient. We compute the operator product of composite operators via a point-splitting
procedure and denote by lim:w ′→w: the limit in which we subtract singularities as per the normal ordering. See [13] for a pedagogical
discussion of this standard procedure. We compute:

Φh(x; z) · ∂ ȳ T (y) ∼ 1

2i

∮
z

dw Φh(x, z) · (∂yΦ1∂y J + 2Φ1∂
2
y J

)

∼ 1

2i

∮
z

dw
1

w − z
lim

:w ′→w:
(
∂yΦ1

(
y; w ′)(2(y − x)∂x − 2h

)
Φh(x; w) + 2Φ1

(
y; w ′)2∂xΦh(x; w)

)

∼ ∂ ȳ

(
h

(x − y)2
Φh(x; z) + 1

y − x
∂xΦh(x; z)

)
. (2.16)

The result is consistent with the standard operator product for a space–time primary of dimension h:

T (x)Φh(y) ∼ hΦh(y)

(x − y)2
+ ∂yΦh(y)

x − y
. (2.17)

Note that this calculation by itself already fixes the normalization of the space–time energy–momentum tensor.

2.3.4. The current energy–momentum operator product
The second intermediate result we wish to compute is the operator product between the current and the (derivative of the) space–time

energy–momentum tensor. We find:

J (x; z) · ∂ ȳ T (y) ∼ 1

2i

∮
z

dw lim
:w ′→w:

∂yΦ1
(

y; w ′) ·
(

2k(y − x)

(z − w)2
+ 1

z − w

(
(x − y)2∂2

y − 2
)

J (y; w)

)

+ Φ1
(

y; w ′) ·
(

4k

(z − w)2
+ 2

z − w

(−2∂y J (y; w) + 2(y − x)∂2
y J (y; w)

))

+ 1

z − w ′
(
4(y − x)∂y + (x − y)2∂2

y + 2
)
Φ1

(
y; w ′) · ∂y J (y; w)

+ 2

z − w ′
(
(x − y)2∂y + 2(y − x)

)
Φ1

(
y; w ′) · ∂2

y J (y; w)

∼ π
(
2∂yΦ1 J + 2Φ1∂y J − 4(y − x)∂yΦ1∂y J − 8(y − x)Φ1∂

2
y J − 3(x − y)2∂yΦ1∂

2
y J − (x − y)2∂2

yΦ1∂y J
)

+ π∂
(
4(k + 1)Φ1 + (2k + 8)(y − x)∂yΦ1 + 2(x − y)2∂2

yΦ1
)
(y; z). (2.18)

Under the global SL(2,R) charges (corresponding to a subgroup of the SO(2,2) isometry group of the AdS3 space–time), the space–time
energy–momentum tensor T (x) transforms as a tensor of weight two. That reasoning also determines the terms in the above expression
that are not total derivatives on the worldsheet, i.e. the first two lines in the final result. We will use derivatives of the above operator
product expansion in the following calculation.

2.3.5. The stress–energy tensor operator product
Finally, we present some details of the calculation of the operator product expansion of the (derivative) of the boundary energy–

momentum tensor. We spit the operator appearing in the energy–momentum tensor T (y) such that Φ1 is at w ′ and J is at w , after
which we take the normal ordered limit lim:w ′→w: . We calculate:

∂x̄T (x)T (y) ∼ 1

2(k − 2)

∫
d2 w lim

:w ′→w:

(
∂x̄∂y

(
1

(x − y)2
Φ1

(
y; w ′) + ∂yΦ1(y; w ′)

x − y

)
· ∂y J (y; w) J̄ ( ȳ)

+ ∂x̄

(
1

(x − y)2
Φ1

(
y; w ′) + ∂yΦ1(y; w ′)

x − y

)
· 2∂2

y J (y; w) J̄ ( ȳ)

)

+ 2π

2(k − 2)

∫
d2 w lim

:w ′→w:
(
∂yΦ1

(
w ′) · ((−k − 4)∂x + 2(y − x)∂2

x

)
∂Φ1(x) J̄ ( ȳ) + Φ1

(
w ′) · 2∂2

x ∂Φ1(x) J̄ ( ȳ)

+ ∂yΦ1
(

w ′) · (2∂xΦ1∂x J + 4Φ1∂
2
x J + 3(x − y)∂xΦ1∂

2
x J + (x − y)∂2

x Φ1∂x J
)

J̄ ( ȳ)

+ Φ1
(

w ′) · (−6∂xΦ1∂
2
x J − 2∂2

x Φ1∂x J
)

J̄ ( ȳ)
)
. (2.19)

After using Eq. (2.12), the calculation reduces to a careful manipulation of identities for distributions (of the sort ∂n
x (g(x)δ(x − y)) =

g(y)∂n
x δ(x − y)). We find (the x̄-derivative of) the end result:

T (x) · T (y) ∼ C
4

+ 2T (y)

2
+ ∂y T (y)

, (2.20)

2(x − y) (x − y) (x − y)
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where the central charge operator C is equal to:

C = − 6

k − 2

∫
d2 w Φ1 J J̄ . (2.21)

The operator product expansion is indeed of the canonical form, thus confirming the correct normalization of the boundary energy–
momentum tensor, to all orders in the inverse radius (or inverse string tension) expansion.

A similar calculation shows that the central charge operator C is indeed central (up to an operator vanishing inside string correlation
functions). Finally, the calculation provides us with the exact central charge operator C with prefactor 1/(k − 2).

3. Final remark

In gravity, one can evaluate the central charge of the asymptotic Virasoro algebra(s) either by directly computing the algebra of charges
corresponding to the asymptotic symmetry generators and then evaluating the central charge on the AdS3 background [1,16], by computing
the boundary energy–momentum tensor two-point function, or by computing the Weyl anomaly holographically [2]. There are contexts in
which one can extend these calculations to include higher derivative corrections very effectively (see e.g. [17]) even without knowing all
these terms exactly.

In the context of the conformal field theory description of AdS3 string theory, we find a central charge operator C that can take
different values in different states [5,6]. We can evaluate the vacuum expectation value of the operator C in the AdS3 vacuum to obtain
the central charge in that state. One can do this by the techniques developed in [14] and applied in [18].3 We deduce the result that
the normalized vev of the operator Φ1 J J̄ is exactly −1. We must take note though that, as argued in [4], the leading contribution of
two insertions of the energy–momentum tensor inside a correlation function comes from a disconnected diagram, where we factor out
the energy–momentum two-point function. In order for the remaining factor to correspond to a normalized correlation function, we need
the non-normalized two-point function of the energy–momentum tensor, i.e. the non-normalized vev of the operator C . We propose to
take this into account in naive fashion by introducing a volume factor as a normalization factor. The volume is contained in the vacuum
amplitude due to an integration over zero-modes, and it is mildly renormalized due to oscillator modes. The tree level contribution also
carries a factor of g−2

s where gs is the string coupling constant. Therefore, we expect the normalization factor (up to numerical factors)
to be g−2

s (k − 2)3/2 V C ≈ lsG−1
N (k − 2)3/2 where V C is the volume of the extra compact directions (in string units), ls = √

α′ is the string
length, and G N is the three-dimensional Newton constant. The factor (k − 2)3/2 corresponds to the renormalized volume of AdS3. We
take a definition of the three-dimensional Newton constant G N that incorporates possible α′-corrections to the compactified volume.4

We find therefore that the central charge operator C will contribute with a factor of − 1
k−2 (−1)(k − 2)3/2ls/G N = (k − 2)1/2ls/G N to tree

level amplitudes with two insertions of the boundary energy–momentum tensor. The overall k-independent coefficient can be fixed by
comparing to the semi-classical gravity limit. In conclusion, in this scheme associated to the factorized worldsheet string theory, the exact
central charge will be 3

2

√
k − 2 ls

G N
. That agrees again with a shift of the semi-classical space–time radius squared k by the dual Coxeter

number of the SL(2,R) subgroup of the space–time Virasoro algebra.
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