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Motivated by the recent works of Golovnev et al. (2008), Chiba (2008) [1,2] where a model of inflation
has been suggested with non-minimally coupled massive vector fields, we generalize their work to the
study of the bouncing solution. So we consider a massive vector field, which is non-minimally coupled
to gravity. Also we consider non-minimal coupling of a vector field to the scalar curvature. Then we
reconstruct this model in the light of three forms of parametrization for dynamical dark energy. Finally
we simply plot reconstructed physical quantities in a flat universe.
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1. Introduction

Nowadays it is strongly believed that the universe is experi-
encing an accelerated expansion. The observation data confirm it
as type Ia supernovae [3] associated with large scale structure [4]
and Cosmic Microwave Background anisotropies [5] have provided
main evidence for this cosmic acceleration. In order to explain
why the cosmic acceleration happens, many theories have been
proposed. The standard cosmological model (SCM) furnishes an ac-
curate description of the evolution of the universe. In spite of its
success, the SCM suffers from a series of problems such as the ini-
tial singularity, the cosmological horizon, the flatness problem, the
baryon asymmetry and the nature of dark energy and dark mat-
ter, although inflation partially or totally answers some of these
problems. Inflation theory was first proposed by Guth in 1981 [6].
Inflation is a period of accelerated expansion in the early universe.
It occurs when the energy density of the universe is dominated
by the potential energy of some scalar field called inflaton. Cur-
rently all successful inflationary scenarios are based on the use
of weakly interacting scalar fields. Scalar fields naturally arise in
particle physics including string theory and these can act as candi-
dates for dark energy. So far a wide variety of scalar field dark
energy models have been proposed. These include quintessence
[7], K-essence [8], tachyon [9], phantoms [10], ghost condensates
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[11] and so forth. Two main reasons for the use of scalar fields
to explain inflation are natural homogeneity and isotropy of such
fields and their ability to imitate a slowly decaying cosmological
constant [1]. However, no scalar field has ever been observed, and
designing models by using unobserved scalar fields undermines
their predictability and falsifiability, despite the recent precision
data. The latest theoretical developments (string landscape) offer
too much freedom for model-building, so higher spin fields gener-
ically induce a spatial anisotropy and the effective mass of such
fields is usually of the order of the Hubble scale and the slow-
roll inflation does not occur [12]. Then an immediate question is,
can we do Cosmology without scalar fields? The authors of [1,2]
have shown that a successful vector inflation can be simultane-
ously surmounted in a natural way, and isotropy of the vector field
condensate can be achieved even in the case of triplet of mu-
tually orthogonal vector fields [13]. In spite of inflation success
in explaining the present state of the universe, it does not solve
the crucial problem of the initial singularity [14]. The existence
of an initial singularity is disturbing, because the space–time de-
scription breaks down “there”. Non-singular universes have been
recurrently presented in the scientific literature. Bouncing model
is one of them that was first proposed by Novello and Salim [15]
and Melnikov and Orlov [16] in the late 70’s. At the end of the
90’s the discovery of the acceleration of the universe brought back
to the front the idea that ρ + 3p could be negative, which is pre-
cisely one of the conditions needed for cosmological bounce in GR,
and contributed to the revival of non-singular universes. Bouncing
universes are those that go from an era of acceleration collapse to
an expanding era without displaying a singularity [17]. Necessary
rights reserved.
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conditions required for a successful bounce during the contract-
ing phase, the scale factor a(t) is decreasing, i.e., ȧ < 0, and in
the expanding phase we have ȧ > 0. At the bouncing point, ȧ = 0,
and around this point, ä > 0 for a period of time. Equivalently in
the bouncing cosmology the Hubble parameter H runs across zero
from Ḣ < 0 to H > 0 and H = 0 at the bouncing point. A success-
ful bounce is required around this point.

The remainder of the Letter is as follows. In Sections 2 and 3,
we will consider vector field action proposed in Refs. [1,2] and
study the bouncing solution of this model. In Sections 4 and 5,
we will reconstruct physical quantities for this model and also
will plot the corresponding graphs. Finally we will apply three
parametrizations and compare them for this model.

2. Vector field foundation

We consider a massive vector field, which is non-minimally
coupled to gravity [1,2]. The action is given by

S =
∫

d4x
√−g

(
1

16πG
R − 1

4
Fμν F μν − 1

2
m2UμUμ

+ 1

2
ξ RUμUμ

)
, (2.1)

where Fμν = ∂μUν − ∂νUμ , and ξ is a dimensionless parameter
for non-minimal coupling. We note that the non-minimal coupling
of a vector field is the same as the conformal coupling of a scalar
field in case ξ = 1/6. We adopt the FRW universe with the metric
signature of (− + ++).

The equations of motion are given by

Rμν − 1

2
Rgμν

= 8πG

[
Fμα F αν − 1

4
gμν Fαβ F αβ + (

m2 − ξ R
)
UμUν

− 1

2
gμν

(
m2 − ξ R

)
UαUα − ξ gμνUαUα

+ ξ(∇μ∇ν − gμν�)UαUα

]
, (2.2)

∇ν F νμ − m2Uμ + ξ RUμ = 0, (2.3)

where the right-hand side of Eq. (2.2) is the energy–momentum
tensor of the vector field Ui . The variation of the action with re-
spect to Ui yields the following equations of motion,

1

a2
∇2U0 − 1

a2
∂i U̇ i − m2U0 + ξ RU0 = 0, (2.4)

Ü i + ȧ

a
(U̇ i − ∂i U0) − ∂i U̇ i + 1

a2

(
∂i(∂kUk) − ∇2Ui

)
+ m2Ui − ξ RUi = 0, (2.5)

where a is the scale factor, the dot denotes the derivative with
respect to the cosmic time and the summation over repeated spa-
tial indices is satisfied. Considering the quasi-homogeneous vector
field (∂i Uα = 0) and Eq. (2.4) imply U0 = 0, so that from Eq. (2.5)
we obtain

Ü i + HU̇i − 6ξ

(
Ḣ + 2H2 + k

a2

)
Ui + m2Ui = 0. (2.6)

By using the acceleration relation ä
a = − 4πG

3 (ρ + 3p) we achieve

Ḣ + H2 = −4πG

a2

(
2U̇ 2

i − 4(1 + 6ξ)HUi U̇ i + 6ξU 2
i H2

− m2U 2
i − 2k

2
ξU 2

i

)
, (2.7)
a

where H = ȧ
a , R = 6(Ḣ2 + 2H2 + k

a ) and R0
0 = Ḣ + H2 are the

Hubble parameter, the Ricci scalar and the first component of
the Ricci tensor, respectively. As we know, a dynamical vector
field has generally a preferred direction, and introducing such
vector field may not be consistent with the isotropy of the uni-
verse. In fact, the energy–momentum tensor of the vector field
Uμ has anisotropic components. However, the anisotropic part of
the energy–momentum tensor can be eliminated by introducing a
triplet of mutually orthogonal vector fields. In that case, we obtain
the energy density ρ and the pressure p of the vector fields,

ρ = 1

a2

[
3

2
U̇ 2

i − 3(1 + 6ξ)HUi U̇ i + 9ξU 2
i H2

+ 3

2
m2U 2

i − 9kξ

a2
U 2

i

]
, (2.8)

p = 1

a2

[
3

2
U̇ 2

i − 3(1 + 6ξ)HUi U̇ i + 9ξU 2
i H2

− 3

2
m2U 2

i + 3kξ

a2
U 2

i

]
. (2.9)

Now introducing the change of variable φi = Ui
a (for more details

see Ref. [1]), Eq. (2.4) changes to

φ̈i + 3Hφ̇ +
(

m2 + (1 − 6ξ)
(

Ḣ + 2H2) − 6ξk

a2

)
φi = 0. (2.10)

Then we consider ξ = 1/6 and obtain the basic equations of mo-
tion for a curved universe in terms of φi ,

φ̈i + 3Hφ̇ +
(

m2 − k

a2

)
φi = 0, (2.11)

H2 + k

a2
= 4πG

(
φ̇2

i + m2φ2
i − k

a2
φ2

i

)
, (2.12)

Ḣ + H2 = −4πG
(
2φ̇2

i − m2φ2
i

)
. (2.13)

One can see where equations of motion of a vector field are re-
duced to minimally coupled massive scalar fields. So the energy
density ρ and the pressure p for the vector fields are derived in
terms of φi in case ξ = 1/6 in the form,

ρ = 3

2
φ̇2

i + 3

2
m2φ2

i − 3k

2a2
φ2

i , (2.14)

p = 3

2
φ̇2

i − 3

2
m2φ2

i + k

2a2
φ2

i . (2.15)

Now we are going to consider behavior of the different values of
the parameter ξ for the vector field. We solve numerically Eq. (2.6)
for K = 0,+1,−1 which implies the flat, close and open universe
respectively. Fig. 1 shows the graph of the vector field with respect
to time in all cases of K . One can see where the vector field has
oscillation behavior and the magnitude slowly decreases with re-
spect to time evolution. Also by increasing the parameter ξ , the
magnitude of the vector field will increase, but the period of os-
cillation is constant. We note that negative values of ξ are actually
the same as in the above result.

As mentioned above we suggest the following solution for
Ui(t),

Ui(t) = √
Ae−γ t cos(mt + θ), (2.16)

where the parameter A describes the oscillating amplitude of the
field with dimension of [mass]2. Also A is a relation with the pa-
rameter ξ . This solution implies the damping magnitude of the
oscillating vector field.
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Fig. 1. Graphs of vector fields in terms of time. The solid, dash and doted lines represent ξ = 1, 1
6 and 0.5 respectively.

Fig. 2. The graphs of the Hubble parameter for ξ = 1/6, 4πG = 1, m = 1 and k = 0,+1,−1 by choosing φ(0) = 1, φ̇(0) = 0.1, a(0) = 1 and H(0) = 0.01.
3. Bouncing behavior

We will start with a detailed examination on the necessary
conditions required for a successful bounce. During the contract-
ing phase, the scale factor a(t) is decreasing, i.e., ȧ < 0, and in
the expanding phase we have ȧ > 0. At the bouncing point ȧ = 0
and around this point, ä > 0 for a period of time. Equivalently in
the bouncing cosmology the Hubble parameter H runs across zero
from H < 0 to H > 0 and H = 0 at the bouncing point. A success-
ful bounce is required around this point,

Ḣ = −4πG(ρ + p) + k

a2
> 0. (3.1)

At the point where the bounce occurs, Eqs. (2.8) and (2.9) re-
duce to

ρb = 3

2a2

(
U̇ 2

i + m2U 2
i

) − 9k

a4
ξU 2

i , (3.2)

pb = 3

2a2

(
U̇ 2

i − m2U 2
i

) + 3k

a4
ξU 2

i . (3.3)

On the other hand, a successful bounce from Eqs. (2.6), (2.7)
and (3.1) is obtained in the form,

U̇ 2
i <

1

2
m2U 2

i + k

a2
ξU 2

i . (3.4)

This result is similar to the slow-roll inflation. This means that
one requires a flat potential which gives rise to a point bounce for
the model of a vector field. From conditions (3.1), (3.4) it is clear
that if we have bouncing solutions in an open universe, then we
have such behavior for a flat and closed universe as well. Now we
solve the above equation numerically for different values of ξ on
the curved universe. Results are plotted in Fig. 2.
One can see the Hubble parameter H running across zero in
any of three cases of k. In all cases of k, we have H < 0 to H > 0
which implies moving from a collapse era to an expanding era,
and this result will not change for the different values of ξ in all
cases of k. Also in Fig. 3, we can see the behavior of scale factor in
terms of time for different values of k. It is clear that during the
contracting phase, the scale factor a(t) is decreasing, i.e., ä < 0, and
in the expanding phase we have ä > 0, so the point where ä = 0 is
a bouncing point.

Therefore, in the vector field dominated universe we have a
successful bouncing point in a close and flat universe but a turn-
around point in an open universe. The bounce can be attributed
to the negative-energy matter, which dominates at small values of
a and creates a significant enough repulsive force so that a big
crunch is avoided.

4. Reconstruction

Now we are going to present a reconstruction process for a
vector field in the curved universe by ξ = 1/6. In this section,
potential and kinetic energy are reconstructed with respect to red-
shift z. Also we obtain the EoS in terms of z. After that three types
of parametrization are represented for the EoS. By using them we
consider cosmology solutions such as the EoS, the deceleration pa-
rameter and vector field. The stability condition of this system is
described by quantity of the sound speed. We rewrite Eqs. (2.14)
and (2.15) in terms of the effective potential energy V̂ and the ef-
fective kinetic energy K̂ in the following form,

ρ = 3

2
φ̇2

i + 3

2
m2φ2

i − 3k

2a2
φ2

i = 3K̂ + 3V̂ , (4.1)

p = 3
φ̇2

i − 3
m2φ2

i + k
2
φ2

i = 3K̂ − 3V̂ − k
2
, (4.2)
2 2 2a a
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Fig. 3. The graphs of the scale factor for ξ = 1/6, 4πG = 1, m = 1 and k = 0,+1,−1 by choosing φ(0) = 1, φ̇(0) = 0.1, a(0) = 1 and H(0) = 0.01.
ρ + p = 6K̂ − k

a2
. (4.3)

Then we can write the Friedmann equations as follows,

3M2
p

(
H2 + k

a2

)
= ρm + ρ = ρm + 3K̂ + 3V̂ , (4.4)

2M2
p

(
Ḣ − k

a2

)
= −ρm − ρ − p = −ρm − 6K̂ + k

a2
, (4.5)

where ρm is the energy density of dust matter. Also from Eqs. (4.1)
and (4.2), we obtain relationship between the EoS with V̂ and K̂
as

ω = p

ρ
= 3K̂ − 3V̂ − k

a2

3K̂ + 3V̂
= −1 +

2 − k
3a2 K̂

1 + V̂
K̂

. (4.6)

We obviously have

V̂ + 3K̂ >
k

3a2
�⇒ ω > −1,

V̂ + 3K̂ <
k

3a2
�⇒ ω < −1,

V̂ + K̂ = k

3a2
�⇒ ω = −1. (4.7)

By using Eqs. (4.4) and (4.5) we can write

K̂ = −ρm

6
− M2

p

3

(
Ḣ − k

3a2

)
+ k

6a2
, (4.8)

V̂ = M2
p

3

(
3H2 + Ḣ + 2k

a2

)
− ρm

6
− k

6a2
. (4.9)

Since in the present model, the dark energy fluid does not couple
to the background fluid, the expression of the energy density of
dust matter in respect of redshift z is [18],

ρm = 3M2
p H2

0Ωm0(1 + z)3, (4.10)

where Ωm0 is the ratio density parameter of matter fluid and the
subscript 0 indicates the present value of the corresponding quan-
tity. By using the equation 1 + z = a0

a (a0 is quantity given at the
present epoch) and its differential form we have

d

dt
= −H(1 + z)

d

dz
. (4.11)

Introducing a new variable r as

r = H2

H2
, (4.12)
0

we rewrite the equation of motion of a vector field against z as

2r(1 + z)2U ′′
i + 2r(1 + z)

(
1 + H2

0

)
U ′

i − r′(1 + z)2U ′
i

+ r′(1 + z)Ui − rUi + 2m2

H2
0

Ui − 2k

a2
0 H2

0

(1 + z)2Ui = 0. (4.13)

K̂ , V̂ can be rewritten as follows,

K̂ = −1

2
M2

p H2
0Ωm0(1 + z)3 + 1

6
M2

p H2
0r′(1 + z)

+ k

6a2
0

(1 + z)2, (4.14)

V̂ = M2
p H2

0r + 2k

3a2
0

(1 + z)2 − 1

6
M2

p H2
0(1 + z)r′

− 1

2
M2

p H2
0Ωm0(1 + z)3 − k

6a2
0

(1 + z)2. (4.15)

By using Eqs. (4.6), (4.8) and (4.9) we obtain the following expres-
sion for the EoS,

ω =
(1 + z)r′ − 3r + k(1+z)2

a2
0 H2

0 M2
p
(M2

p − 2)

3r − 3Ωm0(1 + z)3 + k(1+z)2

a2
0 H2

0 M2
p
(M2

p + 2)
. (4.16)

Then we obtain the following equation for r(z),

r(z) = Ωm0(1 + z)3 + (1 − Ωm0)eβ(z)

+ α0

z∫
0

[
ω(z̃)

(
2 + M2

p

) + (
2 − M2

p

)]
(1 + z̃)e−β(z̃) dz̃,

(4.17)

where β(z) = ∫ z
0

3w(z̃)
1+z̃ dz̃ and α0 = k

a2
0 H2

0 M2
p

.

r(z) = Ωm0(1 + z)3 + (1 − Ωm0)e3
∫ z

0
1 + w(z̃)

1 + z̃
dz̃. (4.18)

Also we have the following expression for the deceleration param-
eter q,

q(z) = −1 − Ḣ

H2
= (1 + z)r′ − 2r

2r
. (4.19)

Now we consider the stability of this model by using the hydro-
dynamic analogy and judge on stability by examining the value of
the sound speed. Of course this is a simple approach, the perturba-
tions in vector inflation are much richer than in the hydrodynamic
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Fig. 4. Graphs of the EoS and deceleration parameter in respect of redshift z. The solid, dot and dash lines represent Parametrizations 1, 2 and 3, respectively.
model, see recent interesting works in [19,20]. The sound speed
can be obtained by the following equation,

c2
s = p′

ρ ′ =
−2r′ + (1 + z)r′′ + 2 k(1+z)

a2
0 H2

0 M2
p
(M2

p − 2)

−9Ωm0(1 + z)2 + 3r′ + 2 k(1+z)
a2

0 H2
0 M2

p
(M2

p + 2)
. (4.20)

In order to deal with the stability of our model, the sound speed
must become c2

s � 0, so we can obtain from the above equation
the following condition,

r(z) � ωm0(1 + z)3 − 16ka2
0

H2
0(1 + z)2

. (4.21)

5. Parametrization

Now we consider the three different forms of parametrization
as follows and compare them together.

Parametrization 1. First parametrization was proposed by Cheval-
lier and Polarski [21], and Linder [22], where the EoS of dark
energy in terms of redshift z is given by

ω(z) = ω0 + ωaz

1 + z
. (5.1)

Parametrization 2. Another the EoS in terms of redshift z was pro-
posed by Jassal, Bagla and Padmanabhan [23] as

ω(z) = ω0 + ωb z

(1 + z)2
. (5.2)

Parametrization 3. Third parametrization was proposed by Alam,
Sahni, Saini and Starobinsky [24]. They take expression of r in
terms of z as follows,

r(z) = Ωm0(1 + z)3 + A0 + A1(1 + z) + A2(1 + z)2. (5.3)

By using the results of Refs. [25–27] and [28], we get coefficients
of Parametrization 1 as Ωm0 = 0.29, ω0 = −1.07 and ωa = 0.85,
coefficients of Parametrization 2 as Ωm0 = 0.28, ω0 = −1.37 and
ωb = 3.39 and coefficients of Parametrization 3 as Ωm0 = 0.30,
A0 = 1, A1 = −0.48 and A2 = 0.25. The evolutions of ω(z) and
q(z) are plotted in Fig. 4. Also, using Eqs. (4.14) and (4.15) and the
three parametrizations, the evolutions of K̂ (z) and V̂ (z) are shown
in Figs. 5 and 6 respectively. We note that the graphs can be sim-
ply presented only in the flat universe. From Figs. 4, 5 and 6, we
Fig. 5. Graphs of the reconstructed K̂ in respect of redshift z. The solid, dot and
dash lines represent Parametrizations 1, 2 and 3, respectively.

Fig. 6. Graphs of the reconstructed V̂ in respect of redshift z. The solid, dot and
dash lines represent Parametrizations 1, 2 and 3, respectively.

can see that Parametrizations 1 and 3 are the same nearly and
are slightly different from Parametrization 2. In Fig. 4, the EoS
can fulfill the transition from ω < −1 to ω > −1 for any of three
cases parametrization. Acceleration for all parametrizations shows
tending to the positive value. K̂ and V̂ increase for Parametriza-
tions 1 and 3, but in Parametrization 2 increase (decrease) is ob-
served for V̂ (K̂ ). One can see that Parametrizations 1 and 3 satisfy
the condition K̂ + V̂ > 0 and Parametrization 2 satisfies the con-
dition K̂ + V̂ = const. By Eq. (4.7), we have ω > −1 (ω = −1)
for Parametrizations 1 and 3 (Parametrization 2). This means that
Parametrization 2 is better than other parametrizations.

In Fig. 7, we can see the variation of the vector field against
redshift z. This obviously shows slight difference between all
parametrizations.
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Fig. 7. Graphs of the reconstructed Ui in respect of redshift z. The solid, dot and
dash lines represent Parametrizations 1, 2 and 3, respectively.

6. Conclusion

In this Letter, we have studied the bouncing solution in a
curved universe which is proposed by the model of a massive vec-
tor field, Ui , non-minimally coupled to gravity. For our purpose we
have derived the corresponding energy density, the pressure and
the Friedmann equation for this model. Also we have obtained the
bouncing condition as Eq. (3.4). From this condition, and also the
essential condition (3.1), it is clear that if we have bouncing solu-
tions in an open universe, then we have such behavior for a flat
and closed universe as well. After we plot the Hubble parameter
in terms of time in Fig. 2, for different k, we understood that our
model predicts the bouncing behavior for all cases of k. From these
figures one can see that the Hubble parameter H runs across zero
in any of three cases of k. In all cases of k, we have H < 0 to
H > 0 which implies moving from a collapse era to an expanding
era, and this result will not change for the different values of ξ in
all cases of k. After that in Fig. 3 we have shown that during the
contracting phase, the scale factor a(t) is decreasing, i.e., ä < 0, and
in the expanding phase we have ä > 0, so the point where ä = 0 is
a bouncing point, and this figure is consistent with the results of
Fig. 2.

After that we have investigated an interesting method as the
reconstruction of the non-minimally coupled massive vector field
model with the action (2.1). Our aim was to see whether the
non-minimal coupling vector field can actually reproduce required
values of observable cosmology, such as evolution of the EoS and
the deceleration parameter in respect to the redshift z. We have
reconstructed our model in three different forms of parametriza-
tion for the massive vector field. In Fig. 4 we have found the
EoS crossing −1 in all parametrizations. The variations of recon-
structed kinetic and potential energy against z have been plotted
in Figs. 5 and 6, where in addition Parametrization 2 is better than
two other parametrizations because K̂ + V̂ = const. Also we have
investigated the stability of this system and have obtained a con-
dition by the sound speed in all curvatures. Finally we note that
reconstructed physical quantities have just executed in a flat uni-
verse and it is suggested for an open and close universe as future
work.
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