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A B S T R A C T

Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can
severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been
widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic
mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations
have been identified, and the mutation signatures have been uncovered across different cancer types. However,
somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we
applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma
(COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma
(KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the afore-
mentioned cancer types, patients they were encoded into a large number of numerical values based upon the
enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the
incremental feature selection (IFS) method to identify functional alteration features that could be used to build
the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results
showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coeffi-
cient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498
for the classification of the five cancer types. Further analysis indicated that some of these features and rules
were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-
origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing
insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special
Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by
Yudong Cai & Tao Huang.

1. Introduction

Cancer is regarded as a malignant proliferative disease that can
occur in many tissues and organs in humans [1,2]. As a systemic dis-
ease, the symptoms of cancer are not restricted to the sites of tumor-
igenesis [2]. The proliferative, invasive and metastatic characteristics of
cancer have been associated with a high mortality rates [3–5]. In 2012,
14.1 million new cancer cases were diagnosed, and at the same time,
approximately 8.2 million people died of such disease. Based on sta-
tistical prediction, by 2025, more than 19.3 million people may be
diagnosed with cancer, demonstrating that cancer is one of the major
threats to human life [6].

It is well known that the early diagnosis of cancers can greatly

increase the chances of successful treatment and survival of patients.
Cell-free DNA (cfDNA) has been recognized as a potential non-invasive
cancer biomarker since the discovery of TP53 mutations in the urinary
sediments of bladder cancer patients and the detection of mutated RAS
gene in the blood of cancer patients [7–9]. The liquid biopsy of cfDNA
in plasma or serum could avoid the need for tumor tissue biopsies and
allow the cfDNA to be monitored during the progression and the
treatment of cancers. Information about the tissue-of-origin from the
liquid biopsies are important for locating and diagnosing the primary
cancers early but require knowledge of the cancer-specific or tissue-
specific variations. For example, tissue-specific DNA methylation, cell-
specific nucleosome occupancy pattern and cancer-specific mutation
signatures are now available to characterize these biopsies [10–14].
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Meanwhile, specific mutation patterns have been identified as genetic
characteristics to identify tumor types. For example, ALK gene re-
arrangement and its over-expression have been confirmed to be asso-
ciated with non-small cell lung cancer and anaplastic large cell lym-
phoma [15]. Therefore, ALK gene and its expression products may serve
as a core biomarker for the diagnostic and prognostic evaluation of
these two cancer types [16]. The identification and clinical application
of confirmed tumor genetic markers (mutation patterns) provide a new
method to diagnose tumor types and distinguish them from each other.
However, these mutated genes or gene products do not function in
isolation but interact with each other in cellular networks and processes
[17]. Thus, it is a more robust approach to identify the core unique
characteristics of various tumor types at the level of biological pro-
cesses rather than mutation signatures.

Unlike genes that are represented by specific gene names and
symbols in computational biology, the biological processes are de-
scribed by multiple bioinformatics initiatives based upon different point
cuts. There are two core bioinformatics initiatives that contribute to the
identification and description of functional biological processes and
pathways in humans and across different species: gene ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
[18,19]. GO compiles bioinformatics initiative describing genes and
gene products by clustering their interactions with each other and an-
notating their respective contribution to certain biological processes
[18,20]. In addition, the KEGG pathways provide a new approach to
investigate biological processes. KEGG pathway terms cluster the
functional genes into identified functional pathways, reflecting the real
contribution of such genes to the living organism [19]. Therefore,
during the identification of core unique biological factors in different
tumor types, both GO terms and KEGG terms evaluate the differences
from the point of view of integrated biological processes in a more
comprehensive and convincing manner.

In this study, we applied a pan-cancer analysis to five different types
of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma
(COADREAD), (III) head and neck squamous cell carcinoma (HNSC),
(IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer
(OV). We obtained the somatic mutations found in these five cancer
types from TCGA (The Cancer Genome Atlas) through the cBio cancer
genomics portal [21–23]. Based upon the obtained mutated genes,
patients with each aforementioned cancer type were encoded into a
large number of numerical values using the enrichment theory of GO
terms and the KEGG pathway [24–27]. The Monte-Carlo Feature Se-
lection (MCFS) method [28] was adopted to analyze the GO term fea-
tures and KEGG pathway features, yielding a feature list and sixteen
decision rules. This feature list was used for the incremental feature
selection (IFS) method to discover the most appropriate features for
building the optimal classifier using the classic machine learning al-
gorithm, support vector machine (SVM) [29,30], which could distin-
guish the five types of cancers with the best performance. This optimal
SVM-based classifier provided a Matthews correlation coefficient value
of 0.523 and an overall accuracy of 0.619. With regard to the sixteen
decision rules, they can provide more clues to understanding the spe-
cific functional alterations of each cancer type than the classifier
mentioned above, although it yielded a low overall accuracy of 0.498.
Finally, important GO terms and KEGG pathways involved in the de-
cision rules and optimal SVM-based classifier were extensively analyzed
according to previous experimental results. Our study not only shed
light on the mapping of the tissue-of-origin for cancer detection but also
classified the functional alteration signatures of the five types of can-
cers, providing insight into the cancer-specific functional aberrations as
potential therapeutic targets.

2. Materials and methods

2.1. Materials

The mutational data in different types of cancers were downloaded
from the cBioPortal for Cancer Genomics (http://cbio.mskcc.org/
cancergenomics/pancan_tcga/) [23], which contained the mutations
in eleven cancer types. Because many cancer types only have very few
samples compared with others, cancer types with less than 300 samples
were excluded. The remaining five major cancer types included (I)
BRCA, (II) COADREAD, (III) HNSC, (IV) KIRC, and (V) OV. The num-
bers of samples for these five cancer types are listed in Table 1.

2.2. The functional profiles of mutations

There have been many ways to describe a protein, such as the
protein sequence based features [31] and secondary structure based
features [32]. But the most direct one was the functional annotation of
a protein from databases like GO and KEGG. There were limitations of
direct binary annotation of whether a protein had a specific function.
Such binary functional features will be very sensitive to the mis-anno-
tations in the database. Therefore, the enrichment scores which con-
sidered the significance of overlap between a gene set and a GO or
KEGG function in the genome background, will be more robust and give
a quantitative measurement of function rather than a binary qualitative
measurement [33]. In this study, we used the GO and KEGG enrichment
scores [24–27] of mutated genes to measure the similarity of the
functional effects caused by mutations between cancer patients.

2.2.1. GO enrichment score
For a given cancer patient p and one GO term GOj, let GGO denote

the set of annotated genes of GOj and G(p) denote the set of mutated
genes of cancer patient p. The GO enrichment score of p and GOj is
defined as the hypergeometric test P value [24–27,34–37] on G(p) and
GGO, which can be computed with the following equation:
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where N and M denote the total number of human genes and the
number of genes in GGO, respectively; n and m represent the number of
mutated genes in G(p) and the number of genes both in G(p) and GGO,
respectively. The higher the score, the stronger the functional effects of
mutations in patient p on the GO term GOj are. Overall, 19,997 GO
terms were used in this study, inducing 19,997 GO enrichment scores
for each cancer patient.

2.2.2. KEGG enrichment score
A similar approach was adopted to define the KEGG enrichment

score, which can measure the associations between patients and KEGG
pathways. Let GKEGG denote the set of annotated genes of one KEGG
pathway Kj. The KEGG enrichment score of p and Kj is defined as the
hypergeometric test P value [24–27,34–37] on G(p) and GKEGG. This
score can be calculated using the following equation:

Table 1
The number of samples in each of the five cancer types.

Cancer type Full name Number of samples

BRCA Breast cancer 513
COADREAD Colorectal adenocarcinoma 499
HNSC Head and neck squamous cell carcinoma 306
KIRC Kidney renal clear cell carcinoma 473
OV Ovarian cancer 456
Total – 2247
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where the parameters N and n have the same definitions as those in Eq.
(1), while M and m denote the number of genes in GKEGG and the
number of genes both in G(p) and GKEGG, respectively. Similarly, a large
KEGG enrichment score reflects the strong functional effects of muta-
tions of patient p on the KEGG pathway Kj. Overall, 296 KEGG path-
ways were used in this study, resulting in 296 KEGG enrichment scores
for each cancer patient.

Accordingly, based on the 19,997 GO enrichment scores and 296
KEGG enrichment scores, each cancer patient can be represented by
20,293 (19,997 + 296) enrichment scores. All computational analysis
would be performed on these scores.

2.3. Feature ranking and decision rule identification

To extract important GO terms and KEGG pathways capable of
distinguishing the five cancer types, some advanced computational
methods are necessary due to the large-scale data. In this study, we
applied the MCFS method [28] to analyze 20,293 features mentioned in
Section 2.2, yielding a feature list and some decision rules for further
analysis. Compared to some classic feature selection methods, such as
minimal redundancy maximal relevance (mRMR) [38–44] and max-
imum relevance maximum distance (MRMD) [45,46], which always
select key features by analyzing the original dataset, the MCFS method
determines the importance of a feature by investigating its contribution
for building decision trees. A detailed description and analysis of the
MCFS method can be found in [28].

To evaluate each feature, the MCFS method first builds a large

number of decision trees. Briefly, given an integer m that is much
smaller than the total number of features, randomly construct s feature
sets such that each set consists of m features. For each feature set,
randomly select training samples and testing samples from the original
dataset, on which a decision tree can be built. This procedure is exe-
cuted t times, i.e., t decision trees are built for each feature set. Overall,
s ∙ t decision trees can be built. The importance of each feature g is
evaluated by these decision trees, called relative importance (RI),
which can be computed according to the following equation:
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where wAcc is the weighted accuracy of the decision tree τ, IG(ng(τ)) is
the information gain of the node ng(τ), (no. in τ) is the number of
samples in tree τ, u and v are fixed real numbers, and (no. in ng(τ)) is the
number of samples in node ng(τ). It is clear that a feature that is as-
signed a large RI value is more important. Thus, all features can be
ranked in a list by the decreasing order of their RI values, i.e., features
with high RI values obtain high ranks in the list. In this study, 20,293
features were considered. Using the MCFS method, we can obtain a
feature list, denoted as FL, containing 20,293 ranked features.

In addition to constructing a feature list, the MCFS method can also
yield some decision rules. Each sample can be classified following these
rules. To obtain these rules, this method first extracts most informative
features that are the top p% features in the feature list. Then, n subsets
are generated by randomly selecting samples from the original dataset,
where each sample is represented by informative features. Rule-based
classifiers (e.g., the rough sets [47]) can be built for each dataset, which
consist of a number of IF-THEN rules. As described in [48], the Johnson
Reducer algorithm implemented by ROSETTA software is used to gen-
erate reducts (the minimal sets of features for a classification task) and

Fig. 1. The IFS curve illustrates the association between the number of features used in the SVM classifiers and MCC yielded by the corresponding classifier. (A) The feature number was
set to be a multiple of ten. The highestMCC value is labeled with a red square on the curve. (B) The feature number was between 200 and 400. The highestMCC value is labeled with a red
square on the curve.
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the associated rules for each randomly produced dataset. Here, some
decision rules were obtained by executing the MCFS method on samples
of the five cancer types. A detailed analysis of these rules can help us
understand the specific functional alterations of each cancer type.

2.4. Classification algorithm

Using the MCFS method, a feature list can be obtained. The IFS
method can be performed to select important features for building the
optimal classifier. This method first constructs a series of feature sets,
say F1, F2, …, FN, where Fi contains the first i features in the ranked
feature list FL. For each feature set, all samples are represented by
features in the set, and a classification algorithm is executed on these
samples. The quality of the predicted results is used to evaluate the
importance of the feature set. Obviously, the feature set yielding the
best quality is most important and called optimal feature set. Features
in this set are called optimal features. Additionally, the classifier using
these optimal features to represent samples is termed as optimal clas-
sifier.

As mentioned above, a classification algorithm should be set before
executing the IFS method. Here, we selected the SVM algorithm
[29,30], one of the most classic machine learning algorithms, as the
classification algorithm. Since it was first published, the SVM algorithm
has been applied in several fields, including traditional classification
and regression problems [49–51] and has always shown good gen-
eralizability on problems such as hand-writing recognition [52] and
face detection [53]. The SVM model can be built on a small size dataset,
whereas it still has good generalization performance. In this algorithm,
the non-linear separable samples in the training dataset are always
mapped to a higher-dimensional space using the kernel trick. In the
higher-dimensional space, the positive and negative samples can be
linearly separated by a hyper-plane with a maximum margin. For a new
sample to be classified, the sample is also mapped to the same higher
dimension, and its class depends on which side of the hyper-plane it
falls to.

To quickly implement SVM, a tool, named “SMO”, in Weka [54] was
employed in this study. This tool implements a type of SVM that is
optimized by sequential minimum optimization (SMO) [55]. For con-
venience, it was executed with its default parameters.

2.5. Measurements

According to the IFS method, a SVM-based classifier can be built on
a feature subset. A series of classifiers was constructed. The 10-fold
cross-validation (10-CV) [56] was adopted to evaluate their perfor-
mance. Although it is less accurate than the Jackknife cross-validation
(J-CV) [57], the 10-CV test is a computation-, and time-saving approach
that can yield similar results on a large dataset, in which samples are
encoded by multiple features.

To rate the predicted results yielded by one SVM-based classifier, we
employed some measurements. For each cancer type, we calculated the
prediction accuracy (ACC), which was defined as

= =ACC n
N

i( 1, 2, 3, 4, 5)i
i

i (4)

where ni is the number of samples that are correctly predicted in the i-th
cancer type, and Ni is the total number of samples for this cancer type.
In addition, we further calculated the overall accuracy (TACC) to
evaluate the prediction abilities of classifiers on the whole, which was
defined by
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In addition, to reduce the influence of the class sizes on TACC, the
Matthews correlation coefficient (MCC) [58] was also calculated to

compare the performance of each SVM-based classifier. It is known that
the original MCC is a balanced measurement for binary classification
even if the dataset is unbalanced. In this study, five types of cancers,
i.e., five classes, were considered. Thus, the MCC in multiclass [59] was
employed, which is more complex than that of a binary classification.
Similar to the original MCC, it also can give a balanced assessment
when the sizes of classes are quite different. To date, it has been applied
to evaluate several constructed classification models [41,60–63].

Given a classification problem involving n samples, say s1, s2, …, sn,
and N classes, denoted as 1, 2, …, N. According to the true class of each
sample, a matrix with n rows and N columns, denoted by M, can be
constructed. Its element Mij is set to 1 if si belongs to class j or 0
otherwise. The predicted results derived from a SVM-based classifier
can be used to construct another matrix T. It also has n rows and N
columns, and each element in T can be defined as

= {T if s is predicted to be in class j
otherwise

1
0ij

i

(6)

Accordingly, compute the covariance function between matrices M
and T, which is calculated with the following equation:
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where Mk and Tk are the k-th column of matrices M and T, and Mk and
Tk are the mean value of numbers in Mk and Tk, respectively. The MCC
for multiclass classification problem can be computed by the equation:

=MCC cov M T
cov M M cov T T

( , )
( , ) ( , ) (8)

Consistent with the original MCC, the MCC in multiclass also ranges
between −1 and 1. A larger value of MCC obtained from Eq. (8) in-
dicates a better prediction performance for a SVM-based classifier. In
this study, MCC is used as a major measurement to evaluate the pre-
diction abilities of SVM-based classifiers.

3. Results

In Section 2.2, the GO terms and KEGG pathways were clustered and
used to represent the patients with one of five types of cancers based
upon the enrichment theory. These features were analyzed by the MCFS
method, yielding a feature list FL that is provided in Supplementary
Material S1 and sixteen decision rules listed in Table 2.

The feature list FL was next analyzed with the IFS method to extract
an optimal feature set that can support SVM for yielding the best per-
formance. The original IFS method always tests all possible feature sets.
However, this method is time-consuming to perform due to the large
number of possible feature sets and our limited computational power.
To save on the computational resources, we first tested some special
feature sets that contained the top i features in FL, where i was a
multiple of ten. For each of these feature sets, a SVM-based classifier
was built, executed on all samples that were represented by features in
this set, and evaluated by the 10-CV test. The ACC for each cancer type,
TACC, and MCC values were calculated according to the predicted re-
sults. The prediction performances for all SVM-based classifiers are
listed in Supplementary Material S2. The IFS curve in Fig. 1(A) il-
lustrates the association between the number of features that were used
to build SVM-based classifiers and the corresponding MCC values
yielded by these classifiers, which demonstrates the highest MCC value
of 0.5188 when the top 320 features were selected. It is easy to con-
clude that if some more refined tests on the feature sets with sizes ap-
proximately 320 are performed, a better feature set could be found.
Thus, we further tested the feature sets with sizes between 200 and 400.
The measurements mentioned in Section 2.5 were calculated and are
listed in Supplementary Material S3. Additionally, the association
betweenMCC and the number of used features is illustrated in Fig. 1(B),
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from which we can see that the highest MCC is 0.5231 that was ob-
tained using the top 344 features in FL. Thus, we termed these 344
features the optimal features and the corresponding SVM-based classi-
fier the optimal SVM-based classifier. In addition, the ACCs for BRAC,
COADREAD, HNSC, KIRC and OV obtained with this optimal classifier
were 0.4620, 0.7054, 0.4477, 0.7886 and 0.6404, respectively, and the
TACC was 0.6190.

As mentioned above, another result of the MCFS method is a group
of decision rules that are listed in Table 2. Using these rules for iden-
tifying the five cancer types, the TACC can be 0.4978. This result de-
monstrates quite good accuracy because the accuracy yielded at
random is only 0.2 (1/5). Additionally, unlike the SVM-based classifier,
the process by which the cancer type of a sample is identified can be
easily observed. A detailed analysis of these rules can help us under-
stand the specific functional alterations of each cancer type. Our de-
tailed analysis on these rules as well as some optimal features is dis-
cussed.

4. Discussion

4.1. Analysis of decision rules yielded by the MCSF method

As previously described, we identified sixteen rules (see Table 2) for
distinguishing the five cancer types, among which five are for HNSC,

two for OV, three for KIRC, five for COADREAD and the last one for
BRCA. These rules involved 22 GO terms and ten KEGG pathways, some
of which have been shown to have discriminating power for the five
cancers in previous studies.

GO:0000788, the nuclear nucleosome, is a molecular component
that has been widely known to play a role in epigenetic regulation [64].
The nucleosome remodeling by histone modification and DNA methy-
lation regulate various biochemical pathways essential for tumorigen-
esis [64]. A recent study found that the nucleosome positioning varies
among different cell types and that the cell-free DNA nucleosome oc-
cupancies correlate with the nuclear architecture, gene structure, and
expression observed in cells, suggesting that these occupancies could
inform the cell type of origin [10].

GO:0050821 is a biological process named protein stabilization that
has been assigned as a biomarker for head and neck squamous cell
carcinoma in this study. A previous study reported that the anti-apop-
totic protein BCL-x(L) was implicated in head and neck cancer and that
BCL-x(L) induction appears to be due to protein stabilization rather
than transcriptional activation [65], which supports the identification
of this GO term as a basis of classification. Similarly, another GO term,
GO:0050999, nitric-oxide (NO) synthase regulator activity, also con-
tributes to identifying head and neck cancer. An increased level of in-
ducible nitric oxide synthase (iNOS) expression and activity has been
found in the tumor cells of head and neck cancer [66,67]. Furthermore,

Table 2
The sixteen decision rules identified by the MCFS method.

Classification Rules Features Criteria

Head and neck squamous cell carcinoma (HNSC) Rule 1 GO:1901533 (negative regulation of hematopoietic progenitor cell differentiation) ≥1.445
hsa04973 (Carbohydrate digestion and absorption) ≥0.075

Rule 2 GO:0000788 (nuclear nucleosome) ≥0.505
GO:0000788 (nuclear nucleosome) ≤3.132
GO:0019003 (GDP binding) ≤−0.323

Rule 3 GO:0061462 (protein localization to lysosome) ≥1.169
GO:0061462 (protein localization to lysosome) ≤2.859
hsa04662 (B cell receptor signaling pathway) ≤−0.014
hsa00533 (Glycosaminoglycan biosynthesis - keratan sulfate) ≤−0.190

Rule 4 GO:0050821 (protein stabilization) ≥−0.391
GO:0050821 (protein stabilization) ≤0.797
GO:0050999 (regulation of nitric-oxide synthase activity) ≤−0.452
GO:0031647 (regulation of protein stability) ≤−0.095

Rule 5 GO:0072176 (nephric duct development) ≥2.722
GO:0070242 (thymocyte apoptotic process) ≥0.292
GO:0070242 (thymocyte apoptotic process) ≤1.017

(Ovarian cancer) OV Rule 6 GO:0031049 (programmed DNA elimination) ≥0.846
hsa05214 (Glioma) ≤1.044

Rule 7 hsa05211 (Renal cell carcinoma) ≤−0.699
GO:0042771 (intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator) ≥0.445
GO:0043015 (gamma-tubulin binding) ≥1.807

Kidney renal clear cell carcinoma (KIRC) Rule 8 hsa05220 (Chronic myeloid leukemia) ≤−0.876
GO:0097201 (negative regulation of transcription from RNA polymerase II promoter in response to
stress)

≥2.395

Rule 9 hsa05223 (Non-small cell lung cancer) ≤−0.915
GO:0030197 (extracellular matrix constituent, lubricant activity) ≥2.412

Rule 10 hsa05223 (Non-small cell lung cancer) ≤−0.915
hsa04120 (Ubiquitin mediated proteolysis) ≥0.458
GO:0051234 (establishment of localization) ≤−0.214
GO:0031647 (regulation of protein stability) ≤0.758

Colorectal adenocarcinoma (COADREAD) Rule 11 GO:0030275 (LRR domain binding) ≥−0.270
GO:0019003 (GDP binding) ≥−0.357

Rule 12 hsa05216 (Thyroid cancer) ≥−0.566
GO:0010764 (negative regulation of fibroblast migration) ≥1.608
GO:1902804 (negative regulation of synaptic vesicle transport) ≤8.769

Rule 13 hsa05216 (Thyroid cancer) ≥−0.600
GO:0070411 (I-SMAD binding) ≥0.255

Rule 14 hsa05216 (Thyroid cancer) ≥−0.534
GO:0048642 (negative regulation of skeletal muscle tissue development) ≥1.229
hsa04726 (Serotonergic synapse) ≥0.175

Rule 15 GO:0072075 (metanephric mesenchyme development) ≥1.091
GO:0032525 (somite rostral/caudal axis specification) ≥3.734

Breast cancer (BRCA) Rule 16 other conditions
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a previous study of head and neck cancer identified tumor associated
immune cells (e.g., macrophages, T/NK-cells) are a source of mediators
that may induce the iNOS/NO pathway inside tumor cells. The tumor-
associated macrophages can produce high levels of NO that may
radiosensitize bystander tumor cells [68]. These results suggest the
specific role of this biological process in neck and head cancer.

Regarding ovarian cancer, two GO terms were served as rules in this
study and are supported by previous findings. The first one,
GO:0042771, is a biological process named intrinsic apoptotic sig-
naling pathway in response to DNA damage by p53 class mediator. In
previous studies, the suppression of genes involved in the extrinsic
apoptotic pathway was observed in a particular ovarian cancer cell line
[69], and the ovarian cancer cell survival, anoikis resistance and peri-
toneal metastases may be due to the inhibition of the intrinsic apoptotic
pathway [70], suggesting the specific role of this biological process in
ovarian cancer. The second one, GO:0043015, is a molecular function
named gamma-tubulin binding. Previous studies support a model by
which the BRCA1 ubiquitin ligase, the breast and ovarian cancer spe-
cific tumor suppressor, modifies both gamma-tubulin and a second
centrosomal protein that controls the localization of gammaTuRC to the
centrosome. The loss of BRCA1 would result in centrosome hyper-
activity, supernumerary centrosomes and, possibly, aneuploidy [71].
These findings associate the ovarian cancer and this GO term through
the cancer suppressor gene BRCA1.

GO:0030275 describes the binding of the leucine-rich repeat (LRR)
domain. It is well known that the leucine-rich repeat is a protein
structural motif that contributes to the formation of α/β horseshoe fold
[72]. Such protein structure has been widely identified during the in-
itiation and progression of different tumor types [72]. Concerning the
five different tumor types of interest, such biological process has been
reported to play variable roles. In breast cancer, head and neck squa-
mous cell carcinoma and clear cell renal cell carcinoma, functional
proteins containing leucine-rich repeat contribute to the act as crucial
tumor-suppressors [73–75]. However, in colorectal adenocarcinoma,
leucine-rich repeat containing gene LGR5 have been reported to be
related to a poor prognosis and chemotherapy resistance. Also in
ovarian cancer, leucine-rich repeats play a dual role in tumorigenesis,
either oncogenic or tumor suppressing, reflecting the complex role of
our predicted biological process in tumorigenesis [76]. Considering the
different roles of the LRR domain in different cancer types, such bio-
logical process may allow us to distinguish the five tumor types.

In addition to the GO terms, we found one KEGG pathway
hsa04120 (Ubiquitin mediated proteolysis) for which previous studies
have supported its role in kidney renal clear cell carcinoma. One pre-
vious study showed that SMURF1 (Smad ubiquitin regulatory factor 1)
(SMURF1), a E3 ubiquitin ligase for ubiquitination and proteasomal
degradation, promoted cell growth and metastasis in clear cell renal cell
carcinoma [77]. Another study found that ubiquitin-like with PHD and
RING finger domain 1 (UHRF1), a multi-domain ubiquitin E3 ligase,
plays critical roles in regulating DNA methylation and histone ubiqui-
tination, is frequently overexpressed in human clear cell Renal Cell
Carcinoma (ccRCC) tissues, promotes the non-degradative ubiquitina-
tion of p53, and suppresses the p53 pathway activation and p53-de-
pendent apoptosis in ccRCC cells [78]. These results strongly associate
this ksa04120 pathway with this cancer type.

4.2. Analysis of optimal features

In addition to the decision rules, we identified the optimal feature
set with 344 features, on which an optimal SVM-based classifier was
built, yielding the highest MCC value (0.5231) for classifying the five
cancer types. However, it is quite difficult to analyze all optimal fea-
tures. By examining the MCC values listed in Supplementary Material
S2, we found that only using the first 40 features, the MCC can reach a
value of 0.4630. Therefore, we focused on these 40 features, which are
listed in Table 3. Among these 40 features, ten features have clearly

been shown to have discriminating power based on previous studies.
GO:0019002, the top GO term in the feature list yielded by the

MCFS method, describes selective and non-covalent interactions with
guanosine monophosphate (GMP). In certain cells, cyclic GMP (cGMP)
can be synthesized from guanosine triphosphate (GTP) by guanylyl
cyclase and mediate hormonal signaling [79,80]. As a hormone asso-
ciated cancer, cGMP signaling pathways have been widely confirmed to
contribute to the initiation and progression of breast cancer [81,82]. It
has also been confirmed by in vitro experiments that cGMP interactions
may also contribute to apoptosis in human colon adenocarcinoma [83].
Regarding ovarian cancer and head and neck squamous cell carcinoma,
recent studies also validate the core regulatory role of GMP interactions
during the tumorigenesis of such tumor types [84,85]. However, in
kidney renal clear cell carcinoma, no reports confirmed the oncogenic
role of cGMP interactions during the initiation and progression of
kidney renal clear cell carcinoma, although cGMP functions have been
confirmed in other renal carcinoma types [86].

GO:0061428 is the biological process that negatively regulates RNA
polymerase II-regulated transcription in response to hypoxia. It is well
known that hypoxia is a common feature of the tumor microenviron-
ment. This condition alters gene expressions, facilitating the tumor
survival and progression [87]. The main molecular drivers of this re-
sponse are hypoxia inducible factors, known as HIFs [88]. Previous
studies found that the roles of HIFs vary in different tumors [89],
suggesting that these differences could be used for the classification of
different cancers.

GO:2000270 is termed negative regulation of fibroblast apoptotic
process. Fibroblasts have been shown to participate in human tumor-
igenesis by providing a permissive environment for the proliferation
and survival of epithelial cells, and by remodeling the ECM to promote
tumor growth and invasiveness [90,91]. Cancer associated fibroblasts
(CAFs) were found to vary in abundance among different types of
cancers. For example, breast, prostate, and pancreatic cancers contain
high numbers of CAFs, whereas brain, renal, and ovarian cancers de-
monstrate fewer CAFs [92,93]. Additionally, the molecular features are
diverse in different cancers and cell types [94], suggesting the dis-
criminating power of this GO term.

GO:0044028 and GO:0044029 refer to DNA hypomethylation and
hypomethylation of CpG islands, respectively. Previous studies have
demonstrated that different cancers may have specific methylation
profiles [95,96]. This knowledge has been utilized to identify the tissues
contributing to the circulating DNA pool [11,12]. These results suggest
the capacity of DNA hypomethylation in distinguishing different cancer
types.

GO:0038028 as a functional candidate GO terms that describes the
insulin receptor signaling pathway via phosphatidylinositol 3-kinase.
Insulin receptor signaling pathway and the related phosphatidylinositol
3-kinase (PI3K) signaling pathway have been confirmed to contribute to
the proliferative regulation and have been reported to contribute to the
initiation and progression of various tumor types. Regarding the five
cluster of cancer types, it has been confirmed that as the core pro-
liferative regulatory signaling pathways, insulin receptor signaling
pathway and related PI3k pathway contribute to the initiation and
progression of breast cancer, head and neck squamous cell carcinoma,
kidney renal clear cell carcinoma and ovarian cancer [97–100]. How-
ever, there is no direct evidence for the contribution of these two sig-
naling pathways during colorectal adenocarcinoma tumorigenesis.
Therefore, the biological process described by GO: 0038028 may dis-
tinguish colorectal adenocarcinoma from the other four cancer types.

GO:0031052 describes the normal DNA rearrangements induced by
regulated cleavage of the genome. Such biological process has also been
confirmed to act differently in different tumor types. DNA rearrange-
ments have been widely confirmed in various tumor types. In breast
cancer and ovarian cancer, the rearrangement of BRCA1 and BRCA2 is
quite significant and has been regarded as one of the driver ariants for
the initiation and progression of these two tumor types [101,102].
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What's more, a specific rearrangement of a functional gene TFE3 in
Xp11.2 has been confirmed to contribute to the tumorigenesis of renal
clear cell carcinoma, validating that such biological process may also be
associated with such type of tumor [103]. For colorectal adenocarci-
noma, the fusions of ROS1 and ALK have been widely identified [104].
However, during the tumorigenesis of head and neck squamous cell
carcinoma, few DNA rearrangements described by GO: 0031052 have
been confirmed, implying that the lack of DNA rearrangement may be a
potential characteristic for the head and neck squamous cell carcinoma.

GO:0033593 is a cellular component called BRCA2-MAGE-D1
complex. It is well-known that mutations in BRCA2 gene are strongly
associated with breast and ovarian cancer. The previous study dis-
covered that MAGE-D1 is a downstream target of BRCA2 and that
BRCA2 suppresses cell proliferation by stabilizing MAGE-D1.
Meanwhile, MAGE-D1 protein expression was downregulated in breast
carcinoma cell lines, suggesting its involvement in the tumorigenesis of
breast cancer [105].

5. Conclusions

In this study, based on the computational method, we identified the
GO terms and KEGG pathways that may distinguish the five cancer
types. These functional alteration signatures of five different cancers
can not only map the tissue-of-origin in cancer detection but also have
the potential to be the targets of specific cancer treatments.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.bbadis.2017.12.026.
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