
www.elsevier.com/locate/ocemod

Ocean Modelling 10 (2005) 185–191
FoSSI: the family of simplified solver interfaces for the
rapid development of parallel numerical atmosphere and

ocean models

Stephan Frickenhaus a,b,*, Wolfgang Hiller b, Meike Best b,1

a Competence Center of High Performance Computing, BremHLR, Bremen, Germany
b Alfred-Wegener-Institute for Polar and Marine Research, Computing Center, Columbusstrasse 27568,

Bremerhaven, Germany

Received 28 November 2003; received in revised form 1 June 2004; accepted 14 June 2004

Available online 2 November 2004
Abstract

The portable software FoSSI is introduced that—in combination with additional free solver software

packages—allows for an efficient and scalable parallel solution of large sparse linear equations systems aris-

ing in finite element model codes. FoSSI is intended to support rapid model code development, completely
hiding the complexity of the underlying solver packages. In particular, the model developer need not be an

expert in parallelization and is yet free to switch between different solver packages by simple modifications

of the interface call.

FoSSI offers an efficient and easy, yet flexible interface to several parallel solvers, most of them available

on the web, such as PETSC, AZTEC, MUMPS, PILUT and HYPRE. FoSSI makes use of the concept of

handles for vectors, matrices, preconditioners and solvers, that is frequently used in solver libraries. Hence,

FoSSI allows for a flexible treatment of several linear equations systems and associated preconditioners at

the same time, even in parallel on separate MPI-communicators. The second special feature in FoSSI is the
task specifier, being a combination of keywords, each configuring a certain phase in the solver setup. This

enables the user to control a solver over one unique subroutine. Furthermore, FoSSI has rather similar fea-

tures for all solvers, making a fast solver intercomparison or exchange an easy task. FoSSI is a community
1463-5003/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ocemod.2004.06.004

* Corresponding author. Address: Alfred-Wegener-Institute for Polar and Marine Research, Computing Center,

Columbusstrasse 27568, Bremerhaven, Germany. Tel.: +49 471 4831 1179; fax: +49 471 4831 1590.

E-mail address: sfrickenhaus@awi-bremerhaven.de (S. Frickenhaus).
1 Funded by the German Ministry for Education and Research (DEKLIM-PLASMA).

mailto:sfrickenhaus@awi-bremerhaven.de 


186 S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191
software, proven in an adaptive 2D-atmosphere model and a 3D-primitive equation ocean model, both for-

mulated in finite elements.

The present paper discusses perspectives of an OpenMP-implementation of parallel iterative solvers

based on domain decomposition methods. This approach to OpenMP solvers is rather attractive, as the

code for domain-local operations of factorization, preconditioning and matrix–vector product can be read-

ily taken from a sequential implementation that is also suitable to be used in an MPI-variant. Code devel-

opment in this direction is in an advanced state under the name ScOPES: the Scalable Open Parallel sparse

linear Equations Solver.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Sparse parallel solvers; Iterative solvers; Finite element; User interface
1. Introduction

Modularized software is the basis for efficient and portable code development and is a prereq-
uisite for rapid software development of co-operating working-groups for example in the field of
earth system modeling. The resulting inter-operability of software components nowadays plays an
important role also in scientific computing. This is due to the fact that inter-disciplinary research
has become a major paradigm. However, software infrastructure for efficient co-operation are fre-
quently missing. Furthermore, creation of long-term re-usable and thus portable software requires
knowledge about the life-time and capabilities of the used software components. In the field of
scientific research another serious problem may arise. During research successful algorithms turn
to be no longer applicable with growing problem complexity. As an example one may consider the
development of a finite-element-model that in the initial phase uses linear elements and later needs
higher-order elements, e.g., for stability reasons. In such a case it may turn out that the initially
used solver libraries cannot be used in the final code version. It may then be not feasible to switch
to another solver within the remaining project time. The solution to this problem is to use an al-
most omnipotent solver that integrates almost all solvers present on the web. Such a solver pack-
age can be found for example within the SLES module of PETSC (Balay et al., 2002), the Portable
Extendible Toolkit for Scientific Computing. However, it still remains an open problem how
developers of the model code may test various combinations of solvers and preconditioners of-
fered by the underlying solver library within a reasonable time and without deep knowlegde of
the spectrum of applicable methods. Thus there is a strong demand for a simple-to-use program-
ming-interface for the end user that is programmed and maintained by an expert, who is able to
rapidly extend the interface on user-demands. FoSSI, the Family of Simplified Solver Interfaces, is
such a collection of user-interfaces to different parallel sparse linear solvers, grown up on user de-
mands. The interfacing is greatly simplified for linear systems with matrix-representations in com-
pressed sparse row (CSR) format. The supported MPI-parallel (Gropp et al., 1994) sparse
iterative solvers (Saad, 1996; van der Vorst, 2003) are PETSC, PILUT (Karypis and Kumar,
1997), AZTEC (Tuminaro et al., 1999), HYPRE (Falgout and Yang, 2002), and the parallel direct
solver MUMPS (Amestoy et al., 2000). The interfaces are able to keep several matrices and pre-
conditioners within each solver library, allowing to reuse distributed matrix values and factoriza-
tions for consecutive solves. Each solver is equipped with a single subroutine for solver



S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191 187
configuration and invocation. Different tasks within the interface, e.g., distribution of matrix val-
ues, incomplete factorization, solution and cleanup, can be combined within a single task-identi-
fier. The parallelism is completely hidden behind the specification of an MPI-communicator,
allowing to use various solvers at the same runtime, or, alternatively, allowing parallel solution
of many different linear equation systems synchronously. FoSSI can be downloaded from the
web under

http://www.awi-bremerhaven.de/InfoCenter/IT/WorkingGroups/SciComp/FoSSI.html. Version
1.2 is tested on the following list of platforms (Type/OS/MPI/Compilers):

SGI/Irix6.5/MPT/MIPS, IBM-Power4/AIX5.1L/POE/XLF,XLC, IA32-PC/RedHat 9/LAM-
MPI/Intel, SUNFire/Solaris9/ClusterTools/Forte-7.
2. FoSSI—overview

FoSSI emerged from a user interface developed for the PILUT-solver (Karypis and Kumar,
1997) within the FENA project, which is the precursor of the Finite Element Ocean Model FEOM
(Danilov et al., 2004). It has been found that the usage of such a powerful user interface makes
code development very efficient. Nevertheless, PILUT in its MPI-2 variant turned out not to be a
good choice on some compute platforms , e.g., the IBM-Regatta. Therefore, and for convenience
(user acceptance), the interface principles have been overtaken for other solver libraries, such as
PETSC, AZTEC and HYPRE. All three of these offer the user a wide area of accessible data
structures and configuration options. Especially the library internal storage of distributed matri-
ces, vectors and preconditioners and their reference by handles can be exploited within the user
interfaces by attributing to each parallel linear equations system a FoSSI-handle, which is simply
a user selected number out of a limited range. The second principle of the mentioned libraries is to
separate the setup of matrices, vectors, preconditioners, the configuration of the solver, the invo-
cation of the solver and the deallocation of solver internal data structures. This feature has been
made transparent to the user within the FoSSI-interfaces by means of the task specifier concept. A
task specifier is a sum of elementary task specifiers, each being a configuration or action option for
the parallel solver. For example, in the PETSC-interface a parallel matrix structure is generated,
filled with symmetrically scaled values by specifying the task PET_STRUCT + PET_MVALS +

PET_SYM_SCAL. A more detailed preconditioner configuration is given by the task specifier
PET_PCASM + PET_ASMB + PET_ICC + PET_OVL_2, which sets up an additive Schwarz-precon-
ditioner with overlap 2 in a symmetric implementation (known in PETSC as PETSC_ASM_
BASIC), and an incomplete Cholesky factorization on the subdomains. This setup is specified to-
gether with the solve specifier, e.g., PET_SOLVE + PET_CG for a conjugate gradient iterative
solver.

For a good solver selection and tuning, the user needs detailed performance (timing) informa-
tion. At least, the number of applied iterations and the times for factorization and solution should
be given back to the user or be printed on output. FoSSI gives some more information back to the
user, such as the elapsed time for setup of a parallel matrix, for gathering the solution, for the full
call, or even the cumulated time for all calls. The specifier PET_REPORT orders performance
information in text form before the code returns from the FoSSI-interface routine. The main lim-
itation of the current state of FoSSI is its required input format of matrices and vectors. FoSSI

http://www.awi-bremerhaven.de/InfoCenter/IT/WorkingGroups/SciComp/FoSSI.html


188 S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191
uses global matrix and vector data. However, the interface needs only values on rows that are
actually used by the MPI-task the row is attributed to (according to the user-given partitioning).
In this way, the user does not have to take care about distributed data formats. This limitation
will be overcome in the implementation of a self-contained solver library equipped with a FoSSI
similar user interface. This solver will be independent of other solver packages (see last section).
3. FoSSI used in atmosphere and ocean modeling

FoSSI is currently used in two projects: first, within the Finite Element Ocean Model FEOM
(Danilov et al., 2004), which is a 3D primitive equation ocean model on a static mesh of columns
of tetraeders, and second, within the PLASMA model (Läuter et al., 2003), which is a 2D-adap-
tive atmosphere model based on the shallow water equations on the sphere, formulated in finite
elements with a semi-Lagrangian discretization of time. Both codes currently work with upto
approxiomately 0.5 million degrees of freedom. The setup times for the matrix and vector distri-
bution through FoSSI is negligible within both models (below 0.5s for four CPUs, perfectly
scaling; data not shown). It has been found within the adaptive code, that the overhead to re-
distribute data based on new global matrix structures due to re-meshing is also negligible.
Detailed performance data is not given in the present paper as the underlying numerical cores
of the model codes are described in other papers. Accordingly, we do not report on performance
measurements of the employed solver packages. However, it is worth mentioning that the PETSC-
solver has demonstrated a superior scalability and flexibility with respect to the spectrum of pre-
conditioners. The HYPRE algebraic multigrid preconditioners used for the solution of 3D tracer
advection equation in the FEOM code showed comparable performance.
4. An OpenMP implementation performance outlook

For some model codes, based on OpenMP-parallelization (see Chandra et al., 2000), a solver
based on the same parallelization technique is needed, as the coupling of a multi-threaded
(OpenMP) code to an MPI-solver, waiting in the background, may become rather costful.
Although it is possible to communicate data between threads and MPI-tasks in a safe way
(Rakowsky et al., 2002), an optimal scheduling of the threads and/or MPI-tasks may require each
of them to run on a separate processor. In particular, a ‘‘spinning’’ MPI-Task is awakening faster,
but does not allow for a fast context switch to a corresponding OpenMP-thread running on the
same processor. The consequence is, that on some compute platforms, for a scalable code the
number of required processors is the number of MPI-tasks in the solver plus the number of
threads in the rest of the code. Such a processor setup obviously is not easily load-balanced, as
the processors running the multi-threaded code have to wait for the solution of the linear equa-
tions system, thus wasting compute time.

Generally, an OpenMP (multi-threaded) parallel iterative solver can be programmed on the
basis of a sequential (single CPU) code by distributing parallel work within OpenMP parallel
do-loops. Here, the problem of memory affinity arises: for larger SMP computers memory is dis-
tributed over several CPU-boards of the system, being remotely accessible at an increased latency



S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191 189
time, typically an extra 200–300ns per cache line. Thus, requests for data from a remote board
generate overhead in terms of idle CPU time. On some systems this can be overcome by a so called
‘‘first touch memory allocation policy’’, meaning, that physical memory addresses are generated
at the first time memory is accessed (e.g., initiallized), rather than when it is allocated. This allows
the operating system to place pages of memory near the accessing CPU, e.g., on the same system
board. As memory access on cache-based systems is organized in the cache hierarchy by reference
to pages, the memory of a data array may be stored physically on more than one system board.
Obviously, to reach performance, the programmer must organize memory accesses in his code in
such a way that memory affinity is preserved throughout the runtime of the program code. This
means, that parallel memory access patterns must be repeated, i.e., access to an array of data must
be parallelized in the same way throughout the code, such that each thread deals most of the time
with processor near, i.e., affine memory.

Iterative sparse solvers are based on three time intensive operations: preparation of a precon-
ditioner (in most cases a variant of incomplete factorization), the matrix–vector product and the
preconditioning step (application of a preconditioner to approximately solve a sub-problem with-
in the iterative algorithm). The matrix–vector product can be easily OpenMP-parallelized through
a parallel outer (row-) loop. If the matrix is ordered with near diagonal structure, it makes sense to
store vectors and matrix values in a processor affine memory, such that only a minor fraction of
matrix–vector values is accessed from remote memory. In contrast, the more robust precondition-
ers based on incomplete factorizations of higher level, have an immanent sequential part in their
preparation as well as in their application. One standard way to overcome this problem is to treat
the problem with a domain decomposition technique (see Chan and Mathew, 1994), separating
work into independent subdomains, each treated by its own processor. Within OpenMP, regard-
ing the memory affinity, this is naturally done by introducing a thread-index into shared (global)
data structures. Technically spoken, a static global data array is always shared between the
threads, and its pages physical locations may be gouverned by memory affinity. To preserve mem-
ory affinity in a transparent way, each subdomain may be given a leading index to the global ar-
rays used for communication, e.g., a buffer vector Buff[i] becomes Buff[t][i], where t is
the logical thread number (obtained from omp_get_thread_num()). Within this approach, it is
straight forward to code the basis of OpenMP-parallel solvers from MPI-parallel solvers. The
MPI-send and receive operations can simply be replaced by memory copy operations between
buffers. Furthermore, the code for factorization and preconditioner application can be taken over
from an MPI-implementation without changes. In the next version of FoSSI, an efficient and ro-
bust parallel solver will be provided to the community that is independent of the parallelization
paradigm, namely, the user may chose the MPI- or the OpenMP-version with the same set of fea-
tures and rather similar performance characteristics.

To demonstrate the efficiency of the approach discussed above, performance measurements are
presented in Table 1, allowing to compare the overhead of communication of the MPI- and the
OpenMP version of code. It is seen that the vector update (also known as vector gather) in the
domain decomposition method is more efficient in OpenMP than in MPI (columns 2 vs. 3). This
is due to the overhead of the MPI-implementation over the direct memory-to-memory-copy in the
OpenMP-code, although the MPI communication is forced to work over shared memory. In the
matrix–vector product, the MPI version of code shows more overhead than expected from
the pure update timings. Obviously, the matrix–vector product of the domain-decomposed code



Table 1

Communication times in seconds for 1000 vector updates/matrix–vector products on IBM-p690 (1.3GHz); the matrix is

from the 2D-Poisson problem

#CPUs MPI-update OMP-update MPI-mvu OMP-mvu mv omp-for

2 0.06 0.06 23.9 20.5 20.6

4 0.09 0.05 12.47 10.4 10.4

8 0.11 0.03 6.26 6.1 5.7

16 0.13 0.06 3.51 3.5 3.3

30 0.15 0.2 2.32 3.1 4.1

mvu means domain decomposed matrix–vector product with vector update. mv omp-for is the row-loop-parallel

OpenMP version of the global sparse matrix–vector product.

190 S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191
performs similarly fast as the parallel loop code. On a p690, four 8-CPU subsystems (Multi-Chip-
Modules) are coupled by a communication bus, thus the communication overhead is expected to
increase when more than eight CPUs are used. It is noteworthy that we did not analyse how proc-
esses and threads were distributed over the 32 CPUs. To achieve a reliable memory affinity it is
necessary to bind processes/threads to CPUs.
5. Conclusion

We introduced a convenient way to access various parallel solvers for finite element modeling
codes of geophysical flow, even for the unexperienced user. The Family of Simplified Solver Inter-
faces provides a flexible and highly performing parallel tool. Further development in the field of
robust iterative solvers parallelized in OpenMP and MPI are in progress and necessary, in partic-
ular, for real domain decomposed model codes, i.e., where global matrices and vectors are not
available. The emerging solvers will also take into consideration system specific optimization op-
tions such as processor binding for memory affinity and higher optimization techniques for vector
architectures. In contrast to the existing solvers with FoSSI-interfaces, these new solvers will allow
for a matrix and vector distribution in such a way that the user may program the code around the
solver in a completely domain decomposed way with only processor local data structures. This is
achieved by handing over the communication routine for vector updates to the user. It is planned
to make these solvers accessible to the scientific community for non-commercial use in source
form as a portable maintained stand-alone software package under the acronym ScOPES.

As presented in this paper, FoSSI may serve as a starting point to rapid parallelization of model
codes strongly preserving the performance characteristics of the underlying solver packages. Fur-
thermore, FoSSI can be read as an exemplary code for modularization techniques that make code
development much easier. The reader is strongly encouraged to make free use of the concepts and
the know-how gathered within the freely available source code of FoSSI.
Acknowledgement

The development of FoSSI in the context of PLASMA is funded by the German Ministry for
Education and Research within the German climate research programme DEKLIM. The devel-



S. Frickenhaus et al. / Ocean Modelling 10 (2005) 185–191 191
opment of ScOPES is partly funded within the Competence Center for High Performance Com-
puting Bremen (BremHLR) by the Ministry for Education and Science Bremen. The authors are
very grateful for the contribution of test problems by the FEOM-developers Genady Kivman and
Sergej Danilov as well as by the PLASMA co-developers Natalja Rakowsky and Matthias Laüter.
References

Amestoy, P.R., Duff, I.S., L�Excellent, J.-Y., 2000. Multifrontal parallel distributed symmetric and unsymmetric solvers.

Comput. Methods Appl. Mech. Eng. 184, 501–520, Available from <http://www.enseeiht.fr/apo/MUMPS/>.

Balay, S., Gropp, W., Curfman-Mclnnes, L., Smith, B., 2002. Petsc users manual. Technical Report ANL-95/11.

Revision 2.1.3. Available from <http://www-fp.mcs.anl.gov/petsc/>.

Chandra, R., Dagum, L., Kohr, D., 2000. Parallel Programming in OpenMP. Morgan Kaufmann Publishers.

Chan, T.F., Mathew, T.P., 1994. Domain decomposition algorithms. Acta Numer., 61–143.

Danilov, S., Kivman, G., Schröter, J., 2004. A finite element ocean model: principles and evaluation. Ocean Modell. 6,

125–150.

Falgout, R.D., Yang, U.M., 2002. HYPRE: a library of high performance pre-conditioners, Part III. Comput. Sci.

2002.

Gropp, W., Lusk, E., Skjellum, A., 1994. Using MPI. MIT Press, Cambrige.

Karypis, G., Kumar, V., 1997. Parallel threshold-based ILU Factorization. In: Proceedings of 9th Supercomputing

Conference, SanDiego. ACMSIGARCH, pp. 1–24. Available from <http://www.supercomp.org/sc97/proceedings/>.

Läuter, M., Handorf, D., Dethloff, K., Frickenhaus, S., Rakowsky, N., Hiller,W., 2003. An adaptive Lagrange–

Galerkin shallow-water model on the sphere. In: Heinze, T., Lanser, D., Layton, A.T. (Eds.), Proceedings of the

Workshop on Current Development in Shallow Water Models on the Sphere, 10–14 March 2003. Munich

University of Technology, Munich, Germany.

Rakowsky, N., Frickenhaus, S., Hiller, W., Läuter, M., Handorf, D., Dethloff, K., 2002. A self-adaptive finite element

model of the atmosphere. In: Zwieff-hofer, W., Kreitz, N. (Eds.), Proceedings of the 10th ECMWFWorkshop on the

Use of High Performance Computing in Meteorology: Realizing Ter-aComputing. World Scientific.

Saad, Y., 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing Company.

Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official aztec users guide: version 2.1. Available

from <http://www.cs.sandia.gov/CRF/pspapers/Aztec_ug_2.1.ps>.

van der Vorst, H., 2003. Iterative Methods for Large Linear Systems. Cambridge University Press.

http://www.enseeiht.fr/apo/MUMPS/
http://www-fp.mcs.anl.gov/petsc/
http://www.supercomp.org/sc97/proceedings/
http://www.cs.sandia.gov/CRF/pspapers/Aztec_ug_2.1.ps

	FoSSI: the family of simplified solver interfaces for the rapid development of parallel numerical atmosphere and ocean models
	Introduction
	FoSSI mdash overview
	FoSSI used in atmosphere and ocean modeling
	An OpenMP implementation performance outlook
	Conclusion
	Acknowledgement
	References


