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The evaluation of evidence relating to traces of cocaine on banknotes
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A B S T R A C T

Banknotes can be seized from crime scenes as evidence for suspected association with illicit drug

dealing. Tandem mass spectrometry data are available from banknotes seized in criminal investigations,

as well as from banknotes from general circulation. The aim of the research is to evaluate the support

provided by the data gathered in a criminal investigation for the proposition that the banknotes from

which the data were obtained are associated with a person who is associated with a criminal activity

related to cocaine in contrast to the proposition that the banknotes are associated with a person who is

not associated with a criminal activity involving cocaine. The data considered are the peak area for the

ion count for cocaine product ion m/z 105. Previous methods for assessment of the relative support for

these propositions were concerned with the percentage of banknotes contaminated or assume

independence of measurements of quantities between adjacent banknotes. Methods which account for

an association of the quantity of drug on a banknote with that on adjacent banknotes are described. The

methods are based on an autoregressive model of order one and on two versions of a nonparametric

approach. The results are compared with a standard model which assumes measurements on individual

banknotes are independent; there is no autocorrelation. Performance is assessed using rates of

misleading evidence and a recommendation made as to which method to use.

� 2014 Published by Elsevier Ireland Ltd.
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jou r nal h o mep age: w ww.els evier . co m/lo c ate / fo r sc i in t
A novel approach to the evaluation of evidence of the quantity
of cocaine on banknotes is described. The methods are applicable
more generally and can be applied to measurements of quantities
of other drugs. The novelty is the consideration of autocorrelation
which, in this context, is a measure of the association between the
quantities of drugs on adjacent banknotes. A previous method,
described in [1], uses only one banknote and states that one cannot
assume independence in the measurements between adjacent
banknotes.

The evidence is evaluated through use of the likelihood ratio (LR).
In this context, the ratio is that of the probability density function of
the data 1 under each of two propositions,
* Corresponding author. Tel. þ44 0131 650 4877

E-mail address: c.g.g.aitken@ed.ac.uk (C. Aitken).
1 The ratio is known as a likelihood ratio as this is a technical phrase in statistical

theory in which a probability density function for data given parameter values may

be thought of as a likelihood of the parameter values given the data. The phrase has

been transferred in the forensic statistic literature to refer to the ratio of the

probability density functions given propositions. Note that as the data are

continuous it is not possible to refer to the probability of the data.

0379-0738/$ – see front matter � 2014 Published by Elsevier Ireland Ltd.
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with a criminal activity involving cocaine, and
� HB: the banknotes are associated with a person who is not

associated with a criminal activity involving cocaine.

There has been some previous use of LRs in the area of drugs on
banknotes. In [1], the likelihood ratio of the quantity of
contamination of cocaine on a seized banknote was evaluated
using a histogram. It is noted that calculating a LR for a set of
multiple banknotes using this method is not possible without
assuming independence (i.e., that the quantity of cocaine on a
particular banknote is unaffected by the quantity of cocaine on any
other banknote, such as an immediate neighbour). In [2] the
likelihood ratio for the quantity of cocaine contamination on a set
of banknotes is calculated using a univariate kernel density
estimate. An assumption of independence is made and it is noted
that this assumption may not be warranted. This assumption is not
made in the models introduced in this paper. The results obtained
from these models are compared with a model which assumes
independence.

The data used for the analysis, z = (z1, z2, . . ., zn), are the
logarithms of the peak areas of cocaine on a set of n banknotes. The
strength of the evidence of z in support of HC or HB is to be assessed.
The logarithmic transformation is made to reduce skewness in the
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data before fitting models. Training data are available from
banknotes deemed to be associated with criminal activity
involving cocaine and from banknotes deemed to be associated
with general or background circulation. These training data are
used to develop models associated with HC and HB, respectively.

The likelihood ratio LR associated with the propositions HC and
HB is given by:

LR ¼ f ðzjHCÞ
f ðzjHBÞ

;

where the function f is a probability density function for the
measurements, conditional on HC and on HB in the numerator and
the denominator, respectively. If this statistic is greater than one,
then the evidence assigns more support to the proposition that the
banknotes are associated with a person who is associated with
drug crime involving cocaine. With an assumption of indepen-
dence amongst the values in z,

LR ¼
Qn

i¼1 f ðzijHCÞQn
i¼1 f ðzijHBÞ

:

The interpretation of this LR is slightly different from the one
used for comparison of possible sources of recovered and control
evidence in [3]. Here there is only one set of evidence, the seized
banknotes provided by the law enforcement agency. The LR
provides a measure of support for one or other of the propositions
as to whether the person with whom they are associated is himself
associated or not with criminal activity involving cocaine.

The models described here give three approaches to the
estimation of f in which there is no assumption of independence
amongst the quantities on the n banknotes in the sample of
unknown origin. One approach allows for an autocorrelation of lag
one which models a dependency between measurements on
adjacent banknotes. The other two approaches use a kernel density
approach with multivariate conditional density functions instead
of the univariate kernel density functions used in [2], again
modelling a dependency between measurements from adjacent
banknotes; one of these approaches has a fixed bandwidth, the
other a bandwidth which varies with the density of the
measurements.

2. Data

The method for acquisition of the data is described in [4].
Models were developed for the cocaine product ion m/z 105. For
each sample of banknotes the data resemble a series of peaks, with
each peak corresponding to a banknote. The height of the peak at
any given scan number is given by the number of gas phase ion
transitions giving rise to the cocaine product ion m/z 105 at that
scan number. A peak detection algorithm was written in order to
identify these peaks. The details are beyond the scope of this paper
but are available from the corresponding author on request. Once
identified, the area under each peak was measured and its
logarithm used as a measure of the quantity of cocaine on each
banknote.

Any sample for which the difference between the total number
of recorded banknotes and the number of peaks detected by the
peak detection algorithm was greater than 10% of the total number
of recorded banknotes (either way) was removed as such a
discrepancy meant there were difficulties with the peak detection
algorithm. Any sample with fewer than twenty banknotes was
removed as the statistical procedures were unreliable with such
few banknotes. Any samples for which the information on the
currency or the total number of banknotes were not available were
also removed. Samples were often analysed in multiple runs and
there were some missing runs within samples. For these, the
longest contiguous section of the sample was included, with the
rest discarded. The data from each sample were plotted and any
outlying data points were further investigated and removed if they
were found to be incorrectly identified peaks.

Two sets of training data were formed from the samples
analysed. One set, C, containing data y, was formed to develop the
model for HC, and another set B containing data x, was formed to
develop the model for HB.

2.1. Banknotes that have been associated with criminal activity

involving cocaine

The training data y for models developed for HC are obtained
from banknotes in criminal cases in which the defendant was
convicted of a drug crime involving cocaine. Each case consisted of
multiple exhibits, which may have been found in different
locations. There were 29 cases containing at least one exhibit
with greater than 20 banknotes. The 29 cases consist of between
one and six exhibits, and there were a total of 70 exhibits which are
known to have been associated with a person who has been
involved in drug crime relating to cocaine. For future reference, any
set of banknotes used in the analyses discussed that is said to be
associated with crime will be known as an exhibit.

The training data y of banknotes used to develop models
associated with HC may include exhibits with two different types of
cocaine contamination.

C(a) The banknotes have not been contaminated with cocaine any
more than those banknotes in general circulation. The
contamination detected on the banknotes is consistent with
that typically detected on general circulation banknotes. This
quantity of contamination could have arisen innocently, or
because the banknotes were not contaminated in the course
of a crime (perhaps no drug was present at an exchange of
money) by the person with whom they are associated.

C(b) The banknotes were contaminated through their use in an
illegal drug-related activity involving cocaine or in the course
of other, legal, drug-related activity. This activity could have
been carried out by some person other than the person
eventually convicted.

It is expected that the quantities of cocaine on banknotes in C(a)
will be lower than the quantities of cocaine on banknotes in C(b).
See Fig. 1 for an illustration of the overlap in mean quantities of
cocaine from samples from general circulation and from exhibits
associated with crime (case). The left mode of the crime exhibits is
formed of those exhibits in set C(a), and the right hand mode is
formed of those exhibits in set C(b). Note that C(a) and C(b) are not
propositions but descriptions of the possible sources of cocaine on
the banknotes used as training data for the development of the
models associated with the proposition HC.

2.2. General circulation banknotes

The training data x of banknotes in set B are very unlikely to
contain whole samples that are all associated with crime (although
individual banknotes within a sample may well have been involved
in a crime). Thus the banknotes defined by B and by C(a) are likely
to be similarly contaminated. The banknotes defined by C(b) have
been contaminated through their involvement in criminal activity
involving cocaine, and so are likely to have higher levels of
contamination.

There were 193 general circulation samples of English or
Scottish currency obtained from a variety of locations around the
UK. As shown in Table 1, a large number of the general circulation
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Fig. 1. Density plots of mean contamination of samples/exhibits. Dashed line – general circulation, solid line – crime/case.
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samples were taken from the Bristol area. Tests have been carried
out which did not find evidence that the region the banknotes in
general circulation came from has an effect on the quantities of drug
found [5]. For the calculation of likelihood ratios for seizures in a
particular case it may be necessary to tailor the general circulation
database for use in that case to the region in which the crime
occurred or to refine the analysis with the use of regional factors
(though these are not issues that are discussed further here). In
addition, Table 2 shows that the majority of general circulation
samples were taken from banks. This, again, could be a problem that
requires further investigation if a defendant maintained that the
banknotes had been acquired from some other type of location.
Table 1
Numbers of general circulation banknote samples in different police force areas.

Police force area Number of samples Police force area 

Avon and Somerset 78 West Midlands 

Met 18 Nottinghamshire 

West Yorkshire 11 Kent 

Lancashire 9 Leicestershire 

Hampshire 6 Hertfordshire 

Northumbria 6 Merseyside 

Scotland (other/unknown) 6 Dorset 

Gloucestershire 4 Cleveland 

Gwent 4 Thames Valley 

North Yorkshire 4 Humberside 

Devon and Cornwall 4 Strathclyde 

South Wales 4 Unknown 

Table 2
Split of general circulation banknote samples between type of location.

Type of location Number of samples Type of location 

Bank 157 Sample provided by police 

Newsagent 16 Cash point 

Shopping Centre 4 Post office 

Bureau de Change 3 Sale of car 
2.3. Banknotes for analysis

Data z used for testing with the likelihood ratio will generally
have been provided by law enforcement agencies. This may be
thought to place z in C, by definition. However, the definition of
‘association’ used here for the training set for C is that of
conviction of a crime involving cocaine. Data from other cases
brought by the law enforcement agencies have not been
included in the analysis. This definition of a case is different
from definitions used in previous work, when all seized
banknotes were used as cases [1,4]. The data z are referred to
also as the test set.
Number of samples Police force area Number of samples

4 Berkshire 1

3 Northamptonshire 1

3 Essex 1

3 South Yorkshire 1

2 West Mercia 1

2 Dumfries and Galloway 1

2 Wiltshire 1

2 Aberdeenshire 1

2 Flintshire 1

2 Lincolnshire 1

2

2 Total 193

Number of samples Type of location Number of samples

2 Casino 1

2 Pub 1

1 Unknown 5

1 Total 193
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3. Methods

3.1. Standardisation

The laboratory has four machines on which the banknotes may
be analysed. The choice of which machine to use in a particular
situation is made for operational reasons. The peak area
measurements were standardised to allow for differences in
response dependent on the machine used. In each run, a standard
had been injected at the start of the analysis. The 193 general
circulation samples were analysed, and where this standard could
easily be identified (for 162 samples), the peak area was calculated.
An average standard response for each of the four machines was
calculated based on these 162 samples, and the ratio of each of the
average standards in the second, third or fourth machines to the
first machine was determined. The peak areas for each case exhibit
(70 exhibits) and general circulation sample (193 samples) were
then divided by the appropriate ratio, based on the machine which
had been used to perform the analysis.

3.2. Exploratory data analysis

The aim of this research was to evaluate the likelihood ratio
associated with the evidence relating to cocaine on banknotes for
various models, given by the ratio of the likelihoods under HC and
HB. Three models that account for autocorrelation were developed
to model the quantity of cocaine on a sample of banknotes. The
properties of the data that needed to be reflected by these models
are discussed below.

3.2.1. Contamination on banknotes from general circulation

In previous studies of the quantities of cocaine on banknotes
[1,4], it has been noted that using the percentage of contaminated
banknotes within a sample as a statistic to distinguish between
general circulation samples and crime exhibits is not generally
possible due to the high frequency of contamination within
samples from the general circulation, a conclusion supported by
the current data. It is therefore not sufficient to focus on the
proportion of contaminated banknotes; the quantity of contami-
nation needs to be taken into account to differentiate between
crime exhibits and general circulation samples. Fig. 1 shows the
density plot of the mean quantity of banknote contamination of
193 general circulation samples with a dashed line against the
mean contamination of the 70 crime exhibits with a solid line,
where the means are determined from the individual quantities on
the banknotes in the separate samples.

As can be seen, general circulation samples have mean
quantities of contamination which, although generally lower than
those of the positive case exhibits, are still high, and there is a
substantial overlap between the two density plots. In addition, it
can be seen that the means of the crime exhibits have a mode at
around 6.5, in a similar position to the mode of the means of the
general circulation samples, as well as a mode about 7.2. This is
further evidence to support the suspicion that the set of crime
exhibits C contains a large number of exhibits which are only
contaminated in line with general circulation, and hence are in set
C(a).

3.2.2. Correlation

Banknotes in samples or small exhibits are analysed in their
entirety whereas banknotes in larger exhibits are usually analysed
in pre-selected groups, where the banknotes in each group were
adjacent in the exhibit. Experiments carried out in [6] indicated
that it was possible for drug traces to pass from one contaminated
banknote to an adjacent one (although for heroin rather than
cocaine). As a result, any transfer of drug that had occurred
between adjacent banknotes in the exhibit, as discussed in [6],
would result in autocorrelation being present within the analysed
exhibits. In addition, when banknotes are analysed, there is often
no definitive end to the peak. Some of the ion counts occurring
from cocaine on the previous banknote may be included in the
reading for the next peak. This carry-over effect could also result in
autocorrelated data.

When analysing the autocorrelation within the samples, it was
found that about 90% of the 193 samples from general circulation
and 80% of the 70 case exhibits had an autocorrelation of lag one. A
sample or exhibit is said to have an autocorrelation of lag one if the
approximate 95% confidence interval for the autocorrelation
coefficient of lag one does not include zero, as described in p.
56 of [7]. The proportions of samples and exhibits with
autocorrelations of higher order dropped to around 62% and 56%
for samples and exhibits, respectively, at lag two, and 35% and 39%
by lag five. The models described below account for lag one
correlation but no more.

4. Models

The first model fits an autoregressive process of order one to the
data. The second and third models use nonparametric conditional
kernel density estimates to estimate the conditional densities of
the peak areas of the banknotes, conditioning on the peak area of the
previous banknote. One of these models uses a fixed bandwidth,
the other uses a variable bandwidth. A fourth model, known as a
standard model, assumes independence between measurements on
separate banknotes and was used to compare the results with and
without the independence assumption. The method for calculating
the likelihood ratios using this model is given in section 5.

One method for the measurement of the relative performances
of the four models is to consider rates of misleading evidence
determined from testing the models on data of known sources.
Misleading evidence can happen in one of two ways. Samples of
banknotes in C can provide evidence to support HB. Alternatively,
samples of banknotes in B can provide evidence to support HC.

Two sets of data, the training samples, are used for development
of the models; these are

� x ¼ fxij; i ¼ 1; . . . ; mB; j ¼ 1; . . . ; nBi
g: the logarithms of the peak

areas for cocaine on banknotes from general circulation as
defined in Section 2.2; there are mB samples with nBi

banknotes
in sample i.
� y ¼ fyij; i ¼ 1; . . . ; mC ; j ¼ 1; . . . nCi

g: the logarithms of the peak
areas of banknotes from criminal case exhibits for cocaine as
defined in Section 2.1; there are mC exhibits with nCi

banknotes
in exhibit i.

The questioned sample or test set is

� z = (z1, z2, . . ., zn): the logarithms of the peak areas for cocaine of a
sample of n banknotes of unknown origin. It may sometimes be
known as the seized sample as it has been seized by a law
enforcement agency.

Models are developed for HB (using x) and for HC (using y). The
probability density function of z is then evaluated assuming
separately HB and then HC and the likelihood ratio calculated.

4.1. Autoregressive models of order one

The form of the models for HB and for HC is the same, only the
parameters are different. The model is described with generic
notation here, with a general sample w substituting for x and y as
appropriate.
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The data of the logarithms of the peak areas of intensities of
cocaine for a general sample are denoted w ¼ ðw1; . . . ; wnÞ. An
autoregressive model AR(1) specifies the following relationship
amongst the variables:

wt � m ¼ a ðwt�1 � mÞ þ et (1)

where t = 2, . . ., n ; et � N(0, s2) and w1� Nðm; s2Þ, where N(m, s2)
is conventional notation denoting a normal distribution with mean
m and variance s2. The autocorrelation coefficient a is a measure of
the correlation between adjacent values ðwt; wt�1Þ, in other words,
the pairs of data fðw2; w1Þ; . . . ; ðwn; wn�1Þg. The autocorrelation
coefficient provides a measure of the association between the
quantity of the drug on one banknote, indexed by t, with the
quantity on the previous banknote, indexed by t � 1 indicating the
order in which the banknotes were analysed. Like correlation,
autocorrelation takes values between �1 and 1. A value of zero
indicates no association as can be seen by entering a = 0 into (1). A
value of one indicates that the value for banknote t only varies from
the value for banknote t � 1 by random normal variation with
variance s2 for t = 2, . . ., n.

4.1.1. Prior and posterior distributions

The training data are used in conjunction with prior distribu-
tions for the model parameters to determine posterior distribu-
tions for the parameters u = (m, s2, a) of the autoregressive model.
The prior distributions used for the means and variances are
similar to those used in [8,9], and a truncated normal prior is used
for the autocorrelation parameter, as in [10], in order to provide
compatibility with the development of other models that are
beyond the scope of this paper.

The marginal prior distributions for the parameters are then
given by:

� m � Nð12 ðmaxðwÞ þ minðwÞÞ; rangeðwÞ2Þ;
� s2 � IG(2.5, b), where IG denotes the inverse gamma distribution

and b is known as a hyperparameter; the form of the inverse
gamma density function is given in Appendix A;
� b � G(0.5, 4/range(w)2).
� a � N(0, 0.25), with the autocorrelation restricted to lie between
�1 and 1.

The posterior distributions of the parameters m, s2 and a were
estimated using a Metropolis–Hastings sampler. Details of the
sampler used for m, s2, a and b are given in Appendix A.(For more
general information on Metropolis–Hastings samplers, see p. 289
of [11]).

The above procedure was used separately for each of the
general circulation samples and each of the crime exhibits.

4.2. Nonparametric models

The autoregressive model assumes a normal distribution for the
error terms. A nonparametric model, in which this assumption is
dispensed with, is also used to fit the data. Use of the
nonparametric model also means there is no need for prior
distributions for parameters. As with autoregressive models, a
generic notation is used. The point at which the probability density
function is to be estimated is given by w ¼ ðw1; . . . ; wnÞ. The
estimate is based on the ith sample wi ¼ ðwi;1; . . . ; wi;nDi

Þ from the
appropriate training set where i = 1, . . ., mD and mD is the number of
samples (D = B) or exhibits (D = C) in the training set. The joint
density function of w may be written as:

f Di
ðw1; w2; . . . ; wnÞ ¼ f Di

ðw1Þ f Di
ðw2jw1Þ . . . ; f Di

ðwnjwn�1Þ
allowing for the autocorrelation of lag 1. The marginal density
function f Di

ðw1Þ is estimated by a univariate kernel density
estimate [12]. The conditional density function f Di

ðwtjwt�1Þ; t ¼
2; . . . ; n for each i 2 (1, 2, . . ., mD) can be estimated nonparame-
trically using kernel density estimation, at the point wt , condi-
tioned on the value of wt�1, by:

f̂Di
ðwtjwt�1Þ ¼

ĝDi
ðwt; wt�1Þ

r̂Di
ðwt�1Þ

: (2)

The functions ĝDi
and r̂Di

are kernel density estimates based on
sample i, given by:

ĝDi
ðwt; wt�1Þ ¼ 1

ðnDi
� 1Þh1h2

Xj¼nDi

j¼2

K1
wt � wi; j

h1

� �
K2

wt�1 � wi; j�1

h2

� �

and

r̂Di
ðwt�1Þ ¼ 1

ðnDi
� 1Þh3

Xj¼nDi

j¼2

K3
wt�1 � wi; j�1

h3

� �
;

Note that w refers to the observation at which a value for the
density function is required.

Here, h1, h2 and h3 are bandwidths, and K1, K2 and K3 are kernel
functions, see [13–15] for further details. See also [12] for earlier
applications of kernel density estimation for independent obser-
vations in forensic science. In this analysis, the Gaussian kernel

KðsÞ ¼ ð2pÞ�1=2exp
�s2

2

� �

is used for all three functions K1, K2 and K3.
The functions f̂Di

for each i 2 (1, 2, . . ., mD) were calculated in R
using the np package, [16]. This package sets h2 = h3 (the
bandwidths that apply to the previous banknote in the numerator
and denominator, respectively), and finds the optimal bandwidths
h1 and h2 using cross-validation and maximising the estimated
likelihood, a method which is described in [15]. As has already
been seen, quantities of contamination vary considerably between
different exhibits of banknotes. There is a need to evaluate the
probability density function of a seizure of banknotes using each of
the functions f̂Di

, each of which is based on a different exhibit of
banknotes. Thus the probability density function may have to be
evaluated where there are few data present. As a result, better
results may be obtained by using a bandwidth which varies,
depending on the amount of data present. Therefore, the functions
f̂Di

have been calculated using two different bandwidth types, for
comparison. The first type is a fixed bandwidth, in which h1, h2 and
h3 remain constant at all values of wit and wi;t�1 in the appropriate
training sample. The second type is an adaptive nearest neighbour
bandwidth, introduced in [17]. This type of bandwidth will vary,
depending on the amount of data close by, becoming larger as the
amount of nearby data reduces. The kernel density estimate of
r̂Di
ðwt�1Þ becomes:

r̂Di
ðwt�1Þ ¼ 1

nDi
� 1

Xj¼nDi

j¼2

1

h3 j
K3

wt�1 � wi; j�1

h3 j

� �

where h3j is the Euclidean distance from the point wi; j�1 to the
kth nearest sample point. See [18] for further details. Cross-
validation is then used to select the value of k that maximises the
estimated likelihood. The kernel density estimate of ĝDi

ðwt; wt�1Þ,
with bandwidths h1 and h2 changes similarly.
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5. Classification for a set of banknotes of unknown type

Details for the calculation of the LRs for the autoregressive
model of order one, the nonparametric models and the standard
model are given here.

5.1. Autoregressive model

The probability density function f(z1, z2, . . ., zn j HD) is given by:

Z
QD

f ðz1juDÞ f ðz2jz1; uDÞ . . . f ðznjzn�1; uDÞ f ðuDjwÞ duD:

The distribution f(uD j w) is the posterior distribution of uD ¼
ðmD; s2

D; aDÞ given the training set w. It is estimated from a
weighted average of the posterior distributions f ðuDi

jwÞ, details of
the estimation of which are given in Appendix A. The probability
density function f(z1, z2, . . ., zn j HD) is estimated using Monte Carlo
integration. This involves evaluating f(z1 j uD)f(z2 j z1, uD) . . .

f(zn j zn�1, uD) for samples of uD, drawn from f(uD j w). The simple
average of these evaluations gives an approximation to the
probability density function f(z|HD) for D = C (the numerator of
the LR) and D = B (the denominator of the LR). Details of the
procedure are contained in [19].

5.2. Nonparametric models

The probability density function of the data z assuming each of
the prosecution and defence propositions has again to be
calculated in order to calculate the likelihood ratio for the
nonparametric models for fixed and adaptive bandwidths. For
proposition HD, the probability density function for z (substituted
for w ¼ ðw1; . . . ; wnÞ in Section 4.2) is then

f ðz1; z2; . . . ; znjHDÞ ¼ f ðz1jHDÞ f ðz2jz1; HDÞ . . . f ðznjzn�1; HDÞ

’
XmD

i¼1

vi f Di
ðz1jHDÞ f Di

ðz2jz1; HDÞ . . . f Di
ðznjzn�1; HDÞ

(3)

where f Di
ðztjzt�1Þ is the conditional density of zt given zt�1

estimated using the equivalent conditional density function of
sample or exhibit i, i 2 (1, . . ., mD), for banknotes t = 2, . . ., n, f Di

ðz1Þ
is the marginal density for banknote 1 and vi ¼ nDi

=
Pi¼mD

i¼1 nDi
is a

weight assigned to each sample or exhibit i, with
P

vi ¼ 1.
The nonparametric method of estimating the functions f Di

by
f̂Di

for each of i 2 (1, 2, . . . mD) has been described in Section 4.2.
This is used to estimate the probability density function of z
assuming the proposition, HB or HC.

5.3. Standard model

As a comparison to the three models introduced here, rates of
misleading evidence were also calculated for the standard model
for independent and normally distributed univariate data; i.e.,
measurements between adjacent banknotes are assumed inde-
pendent. The method given in [12], which uses kernel density
estimates for the between sample distribution of the mean was
used, owing to the large variation in contamination on different
samples and exhibits of banknotes. A slight adaptation of the
method presented there is required, because the problem being
considered here is a discrimination problem, not a comparison
problem (comparing of a control and recovered item). The estimate
of the between sample variance also has a slight adjustment,
because the number of banknotes in each sample or exhibit varies
between samples. The likelihood ratio for a seized sample z with n

banknotes, for the discrimination problem, is given by
LR ¼
PmC

i¼1 ðmC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

C þ nl2
Cs2

C

q
Þ
�1

exp½�nðz � yiÞ
2=2ðt2

C þ nl2
Cs2

CÞ�PmB

i¼1 ðmB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

B þ nl2
Bs2

B

q
Þ
�1

exp½�nðz � xiÞ2=2ðt2
B þ nl2

Bs2
BÞ�

(4)

where t2
C and s2

C are respectively the within and between
sample variances for the crime exhibits and t2

B and s2
B are the within

and between variances for general circulation samples. The
bandwidths of the kernel density estimates for the between
sample distributions of the mean are given by lCsC (crime exhibits)
and lBsB (general circulation samples). The mean yi refers to the
mean given by the equation

yi ¼
XnCi

j¼1

yij

with xi defined similarly.
The within sample variance for the crime exhibits is estimated

by

t̂2
C ¼

XmC

i¼1

XnCi

j¼1

ðyij � yiÞ
2

NC � mC

where NC denotes the total number of datapoints so that

NC ¼
XmC

i¼1

nCi

and the between sample variance for the crime exhibits is
estimated by

ŝ
2
C ¼

XmC

i¼1

nCi
ðyi � yÞ2

ñCðmC � 1Þ �
t̂2

C

ñC

where the value of ñC is given by

ñC ¼
1

mC � 1
NC �

PmC

i¼1 n2
Ci

NC

  !
:

The estimators used are the ANOVA estimators given on pages 19–
21 of [20] The bandwidth parameter lC is selected using
Silverman’s rule of thumb [15], so that

lC ¼
4

3mC

� ��1=5

The between and within sample variances and the parameter lB

for general circulation banknotes are estimated similarly by
replacing y with x and C with B.

6. Results

The results are based on 70 exhibits and 193 general circulation
samples. For the 70 exhibits, the sizes ranged from 20 to 1099
detected peaks and for the 193 samples, the sizes ranged from 21 to
257 detected peaks, each peak corresponding to an individual
banknote.

6.1. Parameter estimation for the autoregressive model

Posterior distributions for uC and uB were derived for each crime
exhibit (uC) and each general circulation sample (uB) using the
procedures described in Section 4.1.

In general, the means of general circulation samples, mB were
lower than the means of the crime exhibits mC. This is as expected:



Table 3
Rates of misleading evidence, estimated as (r/n), where r is the number of exhibits/samples out of n analysed for which the likelihood ratio is misleading in each context.

AR(1) Nonparametric fixed bw Nonparametric adaptive nn Standard

Exhibit 0.37 (26/70) 0.27 (19/70) 0.26 (18/70) 0.50 (35/70)

General circulation 0.16 (30/193) 0.32 (62/193) 0.27 (52/193) 0.14 (26/193)
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the crime banknotes should have higher quantities of contamina-
tion than general circulation banknotes.

The variances of both general circulation samples and crime
exhibits were similar. The autocorrelation parameters varied
between samples, but generally lay between 0.2 and 0.7. A few
samples (both general circulation and crime exhibit) had an
autocorrelation close to one. Such a value for the autocorrelation is
indicative of a sample with very similarly contaminated bank-
notes.

6.2. Likelihood ratios

Rates of misleading evidence were calculated for each of the
four models fitted: the autoregressive model of order one, the
nonparametric model with fixed bandwidth, the nonparametric
model with an adaptive bandwidth and the standard model. The
results are displayed in Table 3.

In order to calculate these rates, each exhibit or sample was
taken out in turn and treated as the seized sample of banknotes, z.
The remaining crime exhibits (removing the chosen exhibit and
the other exhibits from the same case) and general circulation
samples (removing the chosen sample) were then treated as the
measurements y and x, respectively, and used to calculate the
likelihood ratio for the removed sample. If this likelihood ratio was
greater than one, the evidence z was said to support HC and if it was
less than one, it was said to support HB. The proportion of times
that the evidence was said to support the proposition from which it
did not originate is an estimate of the rate of misleading evidence.

The smallest rate of misleading evidence for the crime exhibits
is achieved with the nonparametric model with adaptive
bandwidth, followed by the nonparametric model with fixed
bandwidth and then the AR(1) model. The rates are, however, quite
large, with just over one-quarter of the evidence provided from
crime exhibits being said to be misleading by the nonparametric
model with adaptive bandwidth. These large numbers are caused
by the large number of exhibits which are actually not
contaminated any more than general circulation (and so are in
set C(a)), and yet are still included in the test.

The rate of misleading evidence for the standard model for
general circulation samples is the smallest of the rates, with slightly
more than one in eight samples giving misleading evidence. The
AR(1) model has slightly more than 1 in seven samples giving
misleading evidence. Note that the rate of misleading evidence is
used as a general measure of performance of a statistical model and
is not a suggestion of a probability of error in a particular case. There
are many other factors in addition to the output of a statistical model
which will be considered in the assessment of the evidence in a
particular case. One of the purposes of the research was to compare
several models which take account of autocorrelation and assess
their performance in comparison with a model which, incorrectly,
assumed independence. The benefit of this work is the provision of a
measure for performance for the models in contrast to assessments
just based on ‘general experience’.

7. Discussion

Consider the calculation of a likelihood ratio for a sample of
banknotes for which C(a) is the correct set. A model which is
accurate will provide a likelihood ratio of less than one, despite HC

being the correct proposition (though this is not known by the
scientist). This is because samples of banknotes in set C(a) have
contamination in line with general circulation. This result will be
interpreted as evidence that supports HB. The model has provided
misleading evidence; it supports a proposition that is not correct.
This means that the approaches given here cannot be used to
support proposition HB because it is known to be wrong an
unknown proportion of times even with an accurate model with
the proportion depending on the proportion of exhibits in set C(a).
The approach can, however, be used to support the prosecution
proposition.

Rates of misleading evidence are only one measure of perfor-
mance. One of their shortcomings is that they do not give an
indication of the size of the likelihood ratios. In practice, a likelihood
ratio close to one does not provide strong evidence that a seized
sample belongs to a particular class. A method which gives large
likelihood ratios is of more value when being used in evidence
evaluation. The Tippett plots in Fig. 2 help in the assessment of
performance by illustrating likelihood ratios graphically.

The Tippett plots in Fig. 2 indicate the proportion of general
circulation samples (dashed) and crime exhibits (solid) that have a
log-likelihood ratio greater than the value on the horizontal axis of
the plot. Fig. 2 shows that the autoregressive model of order one
has log-likelihoods which are much closer to the neutral value of
zero than the nonparametric models, meaning that it is less useful
for discriminating between crime exhibits and general circulation
samples. The two nonparametric models give larger likelihood
ratios than the AR(1) model, but there are some large false positive
values for these models. It is of concern that these large values
could be erroneous. The Tippett plot for the standard model shows
that most of the general circulation samples have a log-likelihood
ratio very close to zero when this model is used. The absolute
values of log-likelihood ratios for false positive general circulation
samples are small, similar in size to those for the autoregressive
models, with the exception of one general circulation sample
which has a large erroneous value.

The Tippett plots for the nonparametric models have a lot of
outliers. These outliers are thought to be caused by problems with
the reliability of nonparametric estimation techniques in areas
where there are few data. This causes problems when estimating
likelihood ratios, and leads to results which are not very reliable.

Twelve of the 70 crime exhibits were declared as contaminated
(to a degree that is unlikely to be observed in the general
population) by forensic experts prior to their use in this analysis.
The likelihood ratios obtained for these twelve exhibits using the
four models were analysed. All twelve had likelihood ratios greater
than one for all four models, suggesting that the models are
correctly assigning support for HC for these twelve exhibits. It was
found that the five exhibits of these twelve with the fewest number
of banknotes had much larger likelihood ratios when the standard
model was used, than when the autoregressive model was used.
This could suggest that by assuming independence (and using the
standard model), there is a risk of overstating the likelihood ratio
for small samples. A small group of highly contaminated banknotes
which are close together in a small sample will influence the value
of the mean, used in the standard model. This influence is reduced
when autocorrelation is taken into account.
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Fig. 2. Tippett plots of log likelihood ratio values to show the probability that the log likelihood ratio is greater than log(LR). Clockwise from top left – AR(1), fixed bandwidth,

standard model, adaptive bandwidth. General circulation results are indicated with a dashed line and crime exhibit results with a solid line. A background value greater than

zero is a false positive. A crime exhibit value less than zero is a false negative.
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The problem of calculating likelihood ratios for samples in set
C(a) means that we do not expect to obtain a low rate of misleading
evidence for the crime exhibits, and so this is not a useful measure
for evaluating the performance of the models. The most important
desired outcome is that the rate of misleading evidence for general
circulation samples is low, so as to avoid false support for
proposition HC (a false positive). In order to demonstrate that the
method of analysing cocaine traces on banknotes combined with
likelihood ratio evaluation with one of the statistical models
described is useful, it is required that some of the crime exhibits
have a likelihood ratio which is large, as this means that evidence
can be provided to support HC. It can be seen from the rates of
misleading evidence in Table 3 that the autoregressive and
standard models have the smallest rates of misleading evidence
for general circulation samples. Also, as seen from Fig. 2, the
Tippett plots for the AR(1) and standard models for crime exhibits
show that log likelihood ratio values are large enough to provide
support for HC.

The recommendation is that the AR(1) model is used to analyse
the log peak area data arising from the analysis of traces of cocaine
on banknotes. The AR(1) model provides a low rate of misleading
evidence for general circulation samples and provides sensible
likelihood ratio values as a measure of support for proposition HC.
The standard model is included in the discussion for comparison
purposes only and is not recommended for general use as it does
not take account of autocorrelation, which can result in overstated
likelihood ratios.

8. Conclusion

Previous methods described in [21] (though for heroin rather
than cocaine) for the analysis of banknotes have used the
percentage of contaminated banknotes in a collection as a measure
of contamination. However, many banknotes in general circulation
are contaminated with cocaine so an approach based on such
methods for cocaine is not discriminatory. Another method
described in [1] uses intensity of contamination and calculates
the likelihood ratio for just one banknote. Methods described in [2]
assume independence between banknotes, an assumption which
does not hold in the data analysed here. Conversely, the analytical
method described in [21], using tandem mass spectrometry,
enables contamination to be measured by the approximate
quantity of drug on each individual banknote. Three statistical
methods described here allow for correlation between measure-
ments on neighbouring banknotes. Results are compared with a
model assuming independence. There is an elementary extension
for data with autocorrelations of lag greater than one.

The current paper has described initial work on univariate data,
those of measurements of the log peak area of the cocaine product
ion m/z 105. However, there are other variables that may be
considered. Consideration of these would require a multivariate
generalisation of the univariate method described here. For
example, five drugs are analysed and data on log peak area and
log peak height are available for each drug. Use of all these data
requires a ten-dimensional model, development of which is the
subject of further work.

A more sophisticated model, a hidden Markov model, is under
development [19]. The hidden Markov model represents more
directly, than do the models described above, the situation in
which samples of banknotes may be a mixture of banknotes from
general circulation and banknotes that are associated with crime,
where there is a corresponding mix of quantities of cocaine on
different banknotes within the same sample.

The methods described here provide a rigorous statistical
analysis of the evaluation of evidence of quantities of cocaine on
banknotes. However, they may also be used for evidence
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evaluation for continuous data from other evidential types where
there is autocorrelation between adjacent items.
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Appendix A

The methods for estimating the parameters u = (m, s2, a, b) from a

single sample or exhibit are described here. For ease of notation, u is

presented without a subscript. A subscript needs to be added

appropriately for application in the text. An iterative simulation

procedure known as a Metropolis–Hastings (MH) sampler is used to

obtain an estimated sample from a probability distribution. Consider

a general set of data w ¼ fwt ; t ¼ 1; . . . ; ng with parameters u to be

estimated. Here, an estimate of b is needed in order to estimate s2,

even though the resulting estimates of b are not needed to estimate

the likelihood ratio. The MH sampler is used to obtain an estimated

sample from the probability density function f(u j w). This enables a

posterior distribution of the parameters represented by u to be

obtained.

The likelihood f(w j u) is given by:

f ðwjuÞ ¼ ð2ps2Þ�
N
2exp � 1

2s2
ðw1 � mÞ2

� �

� exp �
XN

t¼2

1

2s2
ðwt � m þ am � awt�1Þ2

� �" #
(5)

The prior distributions of m, s2, a and b are taken to be normal,
inverse gamma, truncated normal and gamma respectively, with
parameters as follows:

m � Nðm0; VmÞ; s2� IGðg; bÞ; a � Nða0; VaÞIðjaj < 1Þ;

b � Gðg; hÞ;

where m0, Vm, g, a0, Va, g and h take the values given in the body of
the text and

� IG(g, b) denotes the inverse gamma distribution such that if

s2 � IG(g,b), then f ðs2jg; bÞ ¼ bg

GðgÞ ðs
2Þ�ðgþ1Þ

e�b=s2
; b >

0; g > 0; s > 0; and GðgÞ ¼
R1

0 tg�1e�tdt:

� and G(g, h) denotes the gamma distribution such that if b � G(g,
h), then f ðbjg; hÞ ¼ hg

GðgÞ bg�1
e�hb; g > 0; h > 0; b > 0;

� and I(|a| < 1) is the indicator function such that

Iðjaj < 1Þ ¼ 1 if jaj < 1;
¼ 0 if jaj � 1:

The joint prior distribution, f(u), is therefore given by:

f ðuÞ ¼ f ðmÞ f ðs2jbÞ f ðbÞ f ðaÞ / exp � 1

2Vm
ðm � m0Þ

2

� �

� bgs�ð2gþ2Þexp � b
s2

� �
bg�1expð�hbÞ

� exp � 1

2Va
ða � a0Þ2

� �
Iðjaj < 1Þ (6)
A MH sampler updates the parameters u iteratively in steps, and
accepts or rejects the update according to an acceptance
probability which is defined below. Denote the parameters at
step j by u(j) = (m(j), s2(j), a( j), b( j)) and the updated parameters as
u0 = (m0, s02, a0, b0), then the MH sampler updates the parameters as
follows:

m0 ¼ mð jÞ þ e1; logðs02Þ ¼ logðs2ð jÞÞ þ e2;

a0 ¼ að jÞ þ e3; logðb0Þ ¼ logðbð jÞÞ þ e4:

Here, ek is a normally distributed random variable, with zero mean

and variance Vk for k 2 {1, 2, 3, 4}. It has been shown [22] that the Vk

should be chosen so that the number of accepted updates is close to

25%.

The updated parameter u0 is accepted (meaning that u(j+1) is set to

u0) if U < min(1, A), where U is drawn from a uniform distribution on

the interval [0, 1], and A is given by:

A ¼ f ðwju0Þ f ðu0Þs02b0

f ðwjuð jÞÞ f ðuð jÞÞs2ð jÞbð jÞ (7)

If U > min(1, A), the updated parameter values u0 are not accepted,

and u(j+1) is set to u(j) (i.e. the parameter values do not change). The

likelihoods f(w j u0) and f(w j u(j)) in (7) can be calculated by

substituting u0 and u(j) into the equation for the likelihood in (5).

Similarly the values f(u0) and f(u(j)) are calculated by substituting u0

and u(j) into the equation for the prior distribution in (6). The terms

s02; b0; s2ð jÞ and b(j) in (7) are included to allow for the fact that the

parameters s2 and b are updated via their logarithms. The prior

distribution must therefore be transformed, and these extra terms are

the Jacobian of that transformation.

By starting off the Metropolis–Hastings sampler with some initial

values for step j = 1, we can then iterate through the process

described, updating and then accepting or rejecting the updates, to

obtain the required estimated samples from the probability density

function fu j w).

In total, 250,000 samples were taken. In order to give the sampler a

chance to move away from the initial values chosen, the first 50,000 of

these 250,000 samples were discarded. As each update depends on

the parameters at the previous step, there is autocorrelation between

samples at small lag numbers (so samples with step numbers close

together). To remove this autocorrelation, so that our samples are

close to being independent, only every 25th sample was considered,

discarding the rest. This left 8000 estimated samples from f(u j w).

Convergence to the distributions of the parameter estimates for use in

the determination of the likelihood ratios was checked by visual

inspection of the plots of the evolution of these samples over time.
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