Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10138866 | Journal of Computational and Applied Mathematics | 2019 | 13 Pages |
Abstract
In this paper, we investigate the integral of xnlogp(sin(x)) for natural numbers n and p. In doing so, we recover some well-known results and remark on some relations to the log-sine integral Lsn+p+1(n)(θ). Later, we use properties of Bell polynomials to find an expression for the derivative of the central binomial and shifted central binomial coefficients as finite sums of polygamma functions and harmonic numbers.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Derek Orr,