Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10139438 | Applied Soft Computing | 2018 | 35 Pages |
Abstract
Multi-view representation learning for social images has recently made remarkable achievements in many tasks, such as cross-view classification and cross-modal retrieval. Since social images usually contain link information besides the multi-modal contents (e.g., text description, and visual content), simply employing the data content may result in sub-optimal multi-view representation of the social images. In this paper, we propose a Deep Multi-View Embedding Model (DMVEM) to learn joint embeddings for the three views including the visual content, the associated text descriptions, and their relations. To effectively encode the link information, a weighted relation network is built based on the linkages between social images, which is then embedded into a low dimensional vector space using the Skip-Gram model. The learned vector is regarded as the third view besides the visual content and text description. To learn a joint representation from the three views, a deep learning model with three-branch nonlinear neural network is proposed. A three-view bi-directional loss function is used to capture the correlation between the three views. The stacked autoencoder is adopted to preserve the self-structure and reconstructability of the learned representation for each view. Comprehensive experiments are conducted in the tasks of image-to-text, text-to-image, and image-to-image searches. Compared to the state-of-the-art multi-view embedding methods, our approach achieves significant improvement of performance.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Feiran Huang, Xiaoming Zhang, Zhonghua Zhao, Zhoujun Li, Yueying He,