Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10151417 | Computers in Biology and Medicine | 2018 | 10 Pages |
Abstract
Structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) have provided promising results in the diagnosis of Alzheimer's disease (AD), though the utility of integrating sMRI with rs-fMRI has not been explored thoroughly. We investigated the performances of rs-fMRI and sMRI in single modality and multi-modality approaches for classifying patients with mild cognitive impairment (MCI) who progress to probable AD-MCI converter (MCI-C) from those with MCI who do not progress to probable AD-MCI non-converter (MCI-NC). The cortical and subcortical measurements, e.g. cortical thickness, extracted from sMRI and graph measures extracted from rs-fMRI functional connectivity were used as features in our algorithm. We trained and tested a support vector machine to classify MCI-C from MCI-NC using rs-fMRI and sMRI features. Our algorithm for classifying MCI-C and MCI-NC utilized a small number of optimal features and achieved accuracies of 89% for sMRI, 93% for rs-fMRI, and 97% for the combination of sMRI with rs-fMRI. To our knowledge, this is the first study that investigated integration of rs-fMRI and sMRI for identification of the early stage of AD. Our findings shed light on integration of sMRI with rs-fMRI for identification of the early stages of AD.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Seyed Hani Hojjati, Ata Ebrahimzadeh, Ali Khazaee, Abbas Babajani-Feremi, Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative,