Article ID Journal Published Year Pages File Type
10151498 Information Fusion 2019 38 Pages PDF
Abstract
Infrared images can distinguish targets from their backgrounds on the basis of difference in thermal radiation, which works well at all day/night time and under all weather conditions. By contrast, visible images can provide texture details with high spatial resolution and definition in a manner consistent with the human visual system. This paper proposes a novel method to fuse these two types of information using a generative adversarial network, termed as FusionGAN. Our method establishes an adversarial game between a generator and a discriminator, where the generator aims to generate a fused image with major infrared intensities together with additional visible gradients, and the discriminator aims to force the fused image to have more details existing in visible images. This enables that the final fused image simultaneously keeps the thermal radiation in an infrared image and the textures in a visible image. In addition, our FusionGAN is an end-to-end model, avoiding manually designing complicated activity level measurements and fusion rules as in traditional methods. Experiments on public datasets demonstrate the superiority of our strategy over state-of-the-arts, where our results look like sharpened infrared images with clear highlighted targets and abundant details. Moreover, we also generalize our FusionGAN to fuse images with different resolutions, say a low-resolution infrared image and a high-resolution visible image. Extensive results demonstrate that our strategy can generate clear and clean fused images which do not suffer from noise caused by upsampling of infrared information.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,