Article ID Journal Published Year Pages File Type
10154 Biomaterials 2009 12 Pages PDF
Abstract

Magnesium has shown potential application as a bio-absorbable biomaterial, such as for bone screws and plates. In order to improve the surface bioactivity, a calcium phosphate was coated on a magnesium alloy by a phosphating process (Ca–P coating). The surface characterization showed that a porous and netlike CaHPO4·2H2O layer with small amounts of Mg2+ and Zn2+ was formed on the surface of the Mg alloy. Cells L929 showed significantly good adherence and significantly high growth rate and proliferation characteristics on the Ca–P coated magnesium alloy (p < 0.05) in in-vitro cell experiments, demonstrating that the surface cytocompatibility of magnesium was significantly improved by the Ca–P coating. In vivo implantations of the Ca–P coated and the naked alloy rods were carried out to investigate the bone response at the early stage. Both routine pathological examination and immunohistochemical analysis demonstrated that the Ca–P coating provided magnesium with a significantly good surface bioactivity (p < 0.05) and promoted early bone growth at the implant/bone interface. It was suggested that the Ca–P coating might be an effective method to improve the surface bioactivity of magnesium alloy.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,