Article ID Journal Published Year Pages File Type
10154651 International Journal of Hydrogen Energy 2018 18 Pages PDF
Abstract
The results of the experiment confirm most of the expected virtues of the LH2 pump: rapid (3 min) refueling of the 65-liter prototype vessel at high flow rate (1.55 kgH2 per minute on average), unlimited back to back refueling, low electricity consumption (1.1 kWh/kg H2), no measurable degradation, and low maintenance. High cryogenic vessel fill density is another key performance metric that was demonstrated in an earlier publication. These virtues derive from the high density of LH2 enabling pressurization to high density with relatively little energy consumption and high throughput from a small displacement pump. Boil-off losses as high as 27.7% of dispensed hydrogen were measured, at experimental conditions not representative of operation at a hydrogen refueling station. These losses drop to 15.4% for operation that may be representative of a small station (332 kg/day), while we anticipate less than 6% boil-off with the existing pump and Dewar with improved LH2 delivery truck operations and a more favorable arrangement of the LH2 pump relative to the Dewar.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, ,