Article ID Journal Published Year Pages File Type
10156613 Chaos, Solitons & Fractals 2018 10 Pages PDF
Abstract
This paper presents a simple technique to approximate fractance devices (FDs) capable of improving the performance of any fractional-order oscillator. The proposed technique is based on an elementary mathematical tool of impedance equalization, and requires significantly lesser number of passive components than the existing FD approximation schemes. To compare the merit of approximated FDs with the existing R-C ladder based FDs, a well-known fractional-order Wien-bridge oscillator is realized using both FDs one by one; and the corresponding results are compared exhaustively. It is observed that the fractional-order oscillator realized using the proposed FDs gives better performance in terms of phase-noise, figure of merit (FoM), total harmonic distortion (THD), settling time, peak-to-peak voltage, power dissipation, and hardware compactness. Authenticity and accuracy of the proposed design has been verified using PSpice simulation and practical implementation.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, , ,