Article ID Journal Published Year Pages File Type
10159303 Acta Biomaterialia 2014 12 Pages PDF
Abstract
Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li+). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li+ content, bone-implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li+. Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm−2 released Li+. Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm−2 released Li+, but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li+, is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,