Article ID Journal Published Year Pages File Type
10159444 Acta Biomaterialia 2014 9 Pages PDF
Abstract
Zinc-containing tricalcium phosphate (Zn-TCP) was synthesized to investigate the role of zinc in osteoblastogenesis, osteoclastogenesis and in vivo bone induction in an ectopic implantation model. Zinc ions were readily released in the culture medium. Zn-TCP with the highest zinc content enhanced the alkaline phosphatase activity of human bone marrow stromal cells and tartrate-resistant acid phosphatase activity, as well as multinuclear giant cell formation of RAW264.7 monocyte/macrophages. RAW264.7 cultured with different dosages of zinc supplements in medium with or without zinc-free TCP showed that zinc could influence both the activity and the formation of multinuclear giant cells. After a 12-week implantation in the paraspinal muscle of canines, de novo bone formation and bone incidence increased with increasing zinc content in Zn-TCP - up to 52% bone in the free space. However, TCP without zinc induced no bone formation. Although the observed bone induction cannot be attributed to zinc release alone, these results indicate that zinc incorporated in TCP can modulate bone metabolism and render TCP osteoinductive, indicating to a novel way to enhance the functionality of this synthetic bone graft material.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,