Article ID Journal Published Year Pages File Type
10159498 Acta Biomaterialia 2013 12 Pages PDF
Abstract
Ulvan, extracted from the green algae Ulva lactuca, and chitosan, extracted from Loligo forbesis squid-pen, were carboxymethylated, yielding polysaccharides with an average degree of substitution of ∼98% (carboxymethyl ulvan, CMU) and ∼87% (carboxymethyl chitosan, N,O-CMC). The carboxymethylation was confirmed by Fourier transform infrared spectroscopy and quantified by conductimetric titration and 1H nuclear magnetic resonance. The average molecular weight increased with the carboxymethylation (chitosan, Mn 145→296 kDa and Mw 227→416 kDa; ulvan, Mn 139→261 kDa and Mw 368→640 kDa), indicating successful chemical modifications. Mixtures of the modified polysaccharides were tested in the formulation of polyacrylic acid-free glass-ionomer bone cements. Mechanical and in vitro bioactivity tests indicate that the inclusion of CMU in the cement formulation, i.e. 0.50:0.50 N,O-CMC:CMU, enhances its mechanical performance (compressive strength 52.4 ± 8.0 MPa and modulus 2.3 ± 0.3 GPa), generates non-cytotoxic cements and induces the diffusion of Ca and/or P-based moieties from the surface to the bulk of the cements.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,