Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10159549 | Acta Biomaterialia | 2013 | 13 Pages |
Abstract
Biomimetic nanostructures have a wide range of applications. In particular, biodegradable polymer nanostructures that mimic the subtleties of extracellular matrix may provide favorable cell interactions. In this study, a co-solvent system was developed to configure a thermodynamically metastable biodegradable polymer solution, from which novel nanostructured matrices subsequently formed via wet phase separation (quaternary) or a combination with thermally induced phase separation. Three-dimensional (3D) nanostructured porous matrices were further fabricated by combination with particle-leaching (100-300 μm glucose). The new co-solvent system may generate matrices with reproducible nanostructures from a variety of biodegradable polymers such as poly(d,l-lactide) (PLA), poly(ε-caprolactone) (PCL) and PCL-based polyurethane. In vitro cell culture experiments were performed with mouse pre-osteoblasts (MC3T3-E1) and human bone marrow-derived mesenchymal stem cells (hBM-MSC) to evaluate the osteoinductive potential of PLA nanostructures. The results showed that nanofibrous (<100 nm) membranes promoted the bone-related marker gene expression and matrix mineralization of MC3T3-E1 at 14 days. Nanofibrous 3D matrices seeded with hBM-MSC without osteogenic induction supplements demonstrated a 2.5-fold increase in bone matrix deposition vs. the conventional microporous matrices after 14 and 21 days. Antimicrobial nanofibers were further obtained by plasma-assisted coating of chitosan on PLA nanofibers. This study reveals a platform for fabricating novel biodegradable nanofibrous architecture, with potential in tissue regeneration.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
S.-h. Hsu, S. Huang, Y.-C. Wang, Y.-C. Kuo,