Article ID Journal Published Year Pages File Type
10159896 Acta Biomaterialia 2013 12 Pages PDF
Abstract
Human mesenchymal stem cell (hMSC) migration and recruitment play a critical role during bone fracture healing. Within the complex three-dimensional (3-D) in vivo microenvironment, hMSC migration is regulated through a myriad of extracellular cues. Here, we use a thiol-ene photopolymerized hydrogel to recapitulate structural and bioactive inputs in a tunable manner to understand their role in regulating 3-D hMSC migration. Specifically, peptide-functionalized poly(ethylene glycol) hydrogels were used to encapsulate hMSC while varying the crosslinking density, from 0.18 ± 0.02 to 1.60 ± 0.04 mM, and the adhesive ligand density, from 0.001 to 1.0 mM. Using live-cell videomicroscopy, migratory cell paths were tracked and fitted to a Persistent Random Walk model. It was shown that hMSC migrating through the lowest crosslinking density and highest adhesivity had more sustained polarization, higher migrating speeds (17.6 ± 0.9 μm h−1) and higher cell spreading (elliptical form factor = 3.9 ± 0.2). However, manipulation of these material properties did not significantly affect migration persistence. Further, there was a monotonic increase in cell speed and spreading with increasing adhesivity that showed a lack of the biphasic trend seen in 2-D cell migration. Immunohistochemistry showed well-formed actin fibers and β1 integrin staining at the ends of stress fibers. This thiol-ene platform provides a highly tunable substrate to characterize 3-D hMSC migration that can be applied as an implantable cell carrier platform or for the recruitment of endogenous hMSC in vivo.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,