Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10159933 | Acta Biomaterialia | 2013 | 9 Pages |
Abstract
The oral mucosa is a promising absorption site for drug administration because it is permeable, highly vascularized and allows for ease of administration. Nanofiber scaffolds for local or systemic drug delivery through the oral mucosa, however, have not been fully explored. In this work, we fabricated electrospun gelatin nanofiber scaffolds for oral mucosal drug delivery. To improve structural stability of the electrospun gelatin scaffolds and allow non-invasive incorporation of therapeutics into the scaffold, we employed photo-reactive polyethylene glycol diacrylate (PEG-DA575, 575Â gmolâ1) as a cross-linker to stabilize the scaffold by forming semi-interpenetrating network gelatin nanofiber scaffolds (sIPN NSs), during which cross-linker concentration was varied (1Ã, 2Ã, 4Ã and 8Ã). The results showed that electrospun gelatin nanofiber scaffolds after being cross-linked with PEG-DA575 (i.e. sIPN NS1Ã, 2Ã, 4Ã and 8Ã) retained fiber morphology and possessed improved structural stability. A series of structural parameters and properties of the cross-linked electrospun gelatin scaffolds were systematically characterized in terms of morphology, fiber diameter, mechanical properties, porosity, swelling and degradation. Mucin absorption onto sIPN NS4Ã was also confirmed, indicating this scaffold possessed greatest mucoadhesion properties among those tested. Slow release of nystatin, an anti-fungal reagent, from the sIPN gelatin nanofiber scaffold was demonstrated.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Donald C. Jr., Jeremy A. Hammer, Quan Yuan, W. Andrew Yeudall, Gary L. Bowlin, Hu Yang,