Article ID Journal Published Year Pages File Type
10160251 Acta Biomaterialia 2011 10 Pages PDF
Abstract
Understanding of the interactions between cells and surfaces is essential in the field of tissue engineering and biomaterials. This study aimed to compare the adhesion, proliferation and differentiation of human mesenchymal stem cells (hMSCs), an osteoblast cell line (MC3T3-E1) and gingival fibroblasts (HGF-1) on tissue culture polystyrene (TCPS), glass and titanium (Ti). The average surface roughness was 5, 0.2 and 40 × 10−3 μm for TCPS, glass and Ti, respectively. Immunocytochemistry and image analysis made it possible to quantify the number and morphology of adherent cells as well as the density of the focal points. Regardless of the substrate, both hMSCs and osteoblastic cells were mainly branch-shaped. HGF-1 exhibited a significantly higher number of focal points on Ti than on TCPS and glass. Alizarin red quantification indicated that both hMSCs and osteoblastic cells were more differentiated on TCPS than on Ti and glass. The surface properties of substrates, such as roughness, wettability and chemical composition, modulated the behaviour of the cells. Early events, such as cell adhesion, may influence the differentiation of hMSC and consequently tissue healing around implanted biomaterials.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,