Article ID Journal Published Year Pages File Type
10160350 Acta Biomaterialia 2010 8 Pages PDF
Abstract
Molecular design strategies in biomedical applications often involve creating modular “fusion” proteins, in which distinct domains within a single molecule can perform multiple functions. We have synthesized a new class of modular peptides that include a biologically active sequence derived from the growth factor BMP-2 and a series of hydroxyapatite-binding sequences inspired by the N-terminal α-helix of osteocalcin. These modular peptides can bind in a sequence-dependent manner to the surface of “bone-like” hydroxyapatite coatings, which are nucleated and grown on a biodegradable polymer surface via a biomimetic process. The BMP-2-derived sequence of the modular peptides is biologically active, as measured by its ability to promote osteogenic differentiation of human mesenchymal stem cells. Our study indicates that the modular peptides described here are multifunctional, and the characteristics of this approach suggest that it can potentially be applied to a range of biomaterials for regenerative medicine applications.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,