Article ID Journal Published Year Pages File Type
10161325 Biochemical Engineering Journal 2005 10 Pages PDF
Abstract
A two-dimensional (2D) spectrofluorometer is often used to monitor various fermentation processes. The change in fluorescence intensities resulting from various combinations of excitation and emission wavelengths is investigated by using a spectra subtraction technique. But it has a limited capacity to classify the entire fluorescence spectra gathered during fermentations and to extract some useful information from the data. This study shows that the self-organizing map (SOM) is a useful and interpretative method for classification of the entire gamut of fluorescence spectral data and selection of some combinations of excitation and emission wavelengths, which have useful fluorometric information. Some results such as normalized weights and variances indicate that the SOM network is capable of interpreting the fermentation processes of S. cerevisiae and recombinant Escherichia coli monitored by a 2D spectrofluorometer.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,