Article ID Journal Published Year Pages File Type
10161960 Journal of Pharmaceutical Sciences 2015 6 Pages PDF
Abstract
Capping is a classical manufacturing problem for tablets, which is known to affect more biconvex tablets than flat-faced ones. One reason could be the development of a higher residual die-wall pressure during unloading. Unfortunately, contradictory results were published on the subject. In this work, the evolution of the die-wall pressure during the compaction of biconvex tablets was studied experimentally and using finite element method (FEM) modeling. It was compared with the case of flat-faced tablets. Experimental and numerical results showed that during the compression of biconvex tablet, a lower maximum die-wall pressure and a higher residual die-wall pressure were obtained compared with the case of flat-faced tablet. Moreover, both approaches showed, for biconvex tablets, a temporary increase of the die-wall pressure at the end of the unloading phase. FEM demonstrated that this phenomenon was due to a gradual loss of contact between the punch and the tablet from the side to the center. This complex unloading behavior causes the temporary increase of the die-wall pressure and the development of a shear stress between the convex part and the land of the tablet. This could explain the capping tendency of biconvex tablets.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,