Article ID Journal Published Year Pages File Type
10162103 Journal of Pharmaceutical Sciences 2015 9 Pages PDF
Abstract
Transdermal drug delivery is an alternative route to transport the drug into the blood system. This method has been continuously developed to overcome limitations and is now suitable for a wide variety of drug molecules. In this work, the influences of electric field and conductive polymer were investigated for developing a unique drug delivery system from double-centrifuged natural rubber (DCNR) matrix. Indomethacin (IN) was loaded into polycarbazole (PCz) as a conductive polymer drug host to promote the efficient transportation of the drug. The IN-loaded PCz was blended with DCNR to form a transdermal patch. The permeation of IN through the PCz/NR film and pig skin was carrried out by a modified Franz diffusion cell. The IN diffused from DCNR film by the diffusion controlled combined with erosion mechanism depending on the pore formation period. The drug permeation increased with decreasing cross-link ratio because of more accessible pathways for the drug permeation. Moreover, an electric field and the inclusion of PCz as the drug carrier dramatically improved the diffusion of the drug from the membrane by through the electrorepulsive force and electro-reduced PCz expansion. Thus, the PCz/DCNR films are shown here as a potential transdermal patch under applied electric field.
Related Topics
Health Sciences Pharmacology, Toxicology and Pharmaceutical Science Drug Discovery
Authors
, , , ,