Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10162597 | Journal of Pharmaceutical Sciences | 2014 | 10 Pages |
Abstract
The present study examines how drug's inherent properties and product design influence the evaluation and applications of in vitro-in vivo correlation (IVIVC) for modified-release (MR) dosage forms consisting of extended-release (ER) and immediate-release (IR) components with bimodal drug release. Three analgesic drugs were used as model compounds, and simulations of in vivo pharmacokinetic profiles were conducted using different release rates of the ER component and various IR percentages. Plasma concentration-time profiles exhibiting a wide range of tmax and maximum observed plasma concentration (Cmax) were obtained from superposition of the simulated IR and ER profiles based on a linear IVIVC. It was found that depending on the drug and dosage form design, direct use of the superposed IR and ER data for IVIVC modeling and prediction may (1) be acceptable within errors, (2) become unreliable and less meaningful because of the confounding effect from the non-negligible IR contribution to Cmax, or (3) be meaningless because of the insensitivity of Cmax to release rate change of the ER component. Therefore, understanding the drug, design and drug release characteristics of the product is essential for assessing the validity, accuracy, and reliability of IVIVC of complex MR products obtained via directly modeling of in vivo data.
Keywords
Related Topics
Health Sciences
Pharmacology, Toxicology and Pharmaceutical Science
Drug Discovery
Authors
Yihong Qiu, Xia Li, John Z. Duan,