Article ID Journal Published Year Pages File Type
10225250 Applied Energy 2018 13 Pages PDF
Abstract
New parametric empirical models are developed and validated using experimental data from a light duty 1.9L inline 4 cylinder Compression Ignition (CI) engine as a function of independent input variables. All the experiments were conducted at Advanced Power System (APS) facility at Michigan Technological University. These models predict HC, CO, PM and NOx emissions, EGT and BSFC. These models are then used to predict new operating points to increase the population in the optimization process. The computed EGT is used to estimate the Selective Catalyst Reduction (SCR) and Diesel Oxidation Catalyst (DOC) efficiencies to assess the emission data with different input variables by considering the after-treatment system to see if they meet the tailpipe emission regulation. The optimization results recommend using Diesel/NG RCCI at 7 to 12 bar IMEP operating conditions and use CDC for below 7 bar IMEP operating condition.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,