Article ID Journal Published Year Pages File Type
10225558 Schizophrenia Research 2018 5 Pages PDF
Abstract
Genome-wide association studies (GWAS) reveal numerous schizophrenia (SCZ)-associated single-nucleotide polymorphisms (SNPs); however, functional characterizations of the risk variants remain to be established. Using data from 108 SCZ GWAS loci, we performed systematic miRNA binding site screening of 128 SCZ-associated SNPs and found that 2 out of 3 SNPs located in the 3′UTR were predicted to alter 3 miRNAs' binding sites in 2 target genes. Of the identified SNPs, the most genome-wide significant SNP rs4702 (A/G) in the FURIN 3′UTR, previously identified as an SCZ-associated cis-expression quantitative trait loci (downregulated by the risk G allele), is located in the binding site of miR-338-3p in the presence of the risk G allele. Allele-specific downregulation of FURIN by miR-338-3p was validated with a luciferase reporter assay. Furthermore, we demonstrated that miR-338-3p-mediated FURIN inhibition reduced brain-derived neurotrophic factor (BDNF) maturation and secretion in human embryonic kidney 293T cells. Our data reveal that schizophrenia-associated rs4702 G allele-specific downregulation of FURIN by miR-338-3p reduces mature BDNF production. These data help elucidate the mechanism of genetic predisposition toward schizophrenia or other neurodevelopmental diseases.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , , ,