Article ID Journal Published Year Pages File Type
10227380 Biomaterials 2014 8 Pages PDF
Abstract
The regenerative healing response of injured skeletal muscle is dependent upon a heterogeneous population of responding macrophages, which show a phenotypic transition from the pro-inflammatory M1 to the alternatively activated and constructive M2 phenotype. Biologic scaffolds derived from mammalian extracellular matrix (ECM) have been used for the repair and reconstruction of a variety of tissues, including skeletal muscle, and have been associated with an M2 phenotype and a constructive and functional tissue response. The mechanism(s) behind in-vivo macrophage phenotype transition in skeletal muscle and the enhanced M2:M1 ratio associated with ECM bioscaffold use in-vivo are only partially understood. The present study shows that degradation products from ECM bioscaffolds promote alternatively activated and constructive M2 macrophage polarization in-vitro, which in turn facilitates migration and myogenesis of skeletal muscle progenitor cells.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,