Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10227612 | Biomaterials | 2014 | 10 Pages |
Abstract
Engineering functional muscle tissue requires the formation of densely packed, aligned, and mature myotubes. To enhance the formation of aligned myotubes with improved contractibility, we fabricated aligned electrospun gelatin multi-walled carbon nanotubes (MWNTs) hybrid fibers that were used as scaffolds for the growth of myoblasts (C2C12). The MWNTs significantly enhanced myotube formation by improving the mechanical properties of the resulting fibers and upregulated the activation of mechanotransduction related genes. In addition, the fibers enhanced the maturation of the myotubes and the amplitude of the myotube contractions under electrical stimulation (ES). Such hybrid material scaffolds may be useful to direct skeletal muscle cellular organization, improve cellular functionality and tissue formation.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Serge Ostrovidov, Xuetao Shi, Ling Zhang, Xiaobin Liang, Sang Bok Kim, Toshinori Fujie, Murugan Ramalingam, Mingwei Chen, Ken Nakajima, Faten Al-Hazmi, Hojae Bae, Adnan Memic, Ali Khademhosseini,