Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10227860 | Biomaterials | 2014 | 12 Pages |
Abstract
SM5-1 is a humanized mouse antibody which has a high binding specificity for a membrane protein of about 230 kDa overexpressed in hepatocellular carcinoma (HCC), melanoma and breast cancer. In this study, SM5-1-conjugated poly d, l (lactide-coglycolide) (PLA) PLA containing Cy7 (PLA-Cy7-SM5-1) was prepared to study the targeting specificity of the bioconjugate to HCC-LM3-fLuc cell. Then, SM5-1-conjugated PLA containing 5-fluorouracil (5-FU) (PLA-5FU-SM5-1) and PLA containing 5-FU (PLA-5FU) were prepared for treatment of subcutaneous HCC-LM3-fLuc tumor mice. The results showed that PLA-5FU-SM5-1, PLA-5FU and 5-FU induced a 45.07%, 23.56% and 19.05% tumor growth inhibition rate, respectively, on day 31 post-treatment as determined by bioluminescent intensity. In addition, in order to evaluate the antitumor efficacy of PLA-5FU-SM5-1, HCC-LM3-fLuc cells were injected into the liver to establish the experimental orthotopic liver tumor models. The experiments showed that PLA-5FU-SM5-1, PLA-5FU and 5-FU induced a 53.24%, 31.00%, and 18.11% tumor growth inhibition rate, respectively, on day 31 post-treatment determined by the bioluminescent intensity of the abdomen in tumor-bearing mice. Furthermore, we have calculated the three-dimensional location of the liver cancer in mice using a multilevel adaptive finite element algorithm based on bioluminescent intensity decay calibration. The reconstruction results demonstrated that PLA-5FU-SM5-1 inhibited the tumor rapid progression, which were consistent with the results of subcutaneous tumor mice experiments and in vitro cell experiment results.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Xibo Ma, Zhen Cheng, Yushen Jin, Xiaolong Liang, Xin Yang, Zhifei Dai, Jie Tian,