Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10227868 | Biomaterials | 2014 | 10 Pages |
Abstract
A reverse-transcriptase-subunit of telomerase (hTERT) derived peptide, GV1001, has been developed as a vaccine against various cancers. Previously, we have shown that GV1001 interacts with heat shock proteins (HSPs) and penetrates cell membranes to be localized in the cytoplasm. In this study, we have found that GV1001 lowered the level of intracellular and surface HSPs of various cancer cells. In hypoxic conditions, GV1001 treatment of cancer cells resulted in decreases of HSP90, HSP70, and HIF-1α. Subsequently, proliferation of cancer cells and synthesis of VEGF were significantly reduced by treatment using GV1001 in hypoxic conditions. In an experiment using a nude mouse xenograft model, GV1001 exerted a similar tumor suppressive effect, further confirming its anti-tumor efficacy. Higher apoptotic cell death, reduced proliferation of cells, and fewer blood vessels were observed in GV1001-treated tumors compared to control. In addition, significant reduction of Tie2+ CD11b+ monocytes, which were recruited by VEGF from tumor cells and play a critical role in angiogenesis, was observed in GV1001-treated tumors. Collectively, the results suggest that GV1001 possesses potential therapeutic efficacy in addition to its ability to induce anti-cancer immune responses by suppressing both HSP70 and HSP90.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Bu-Kyung Kim, Bo-Ram Kim, Hyun-Joo Lee, Seoung-Ae Lee, Byoung-Jun Kim, Hong Kim, Yu-Sub Won, Won-Jun Shon, Na-Rae Lee, Kyung-Soo Inn, Bum-Joon Kim,