Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10227887 | Biomaterials | 2014 | 10 Pages |
Abstract
There are two important obstacles for the currently applied anti-cancer drug delivery systems. One is the conflict between long-circulation and cellular uptake while the other one is the achievement of ideal anti-cancer efficacy. To solve these problems, we designed a polypeptide-based micelle system that combined the advantages of receptor mediated endocytosis and multi-drug delivery. Firstly, an amphiphilic PLG-g-Ve/PEG graft copolymer was prepared by grafting α-tocopherol (Ve) and polyethylene glycol (PEG) to poly(l-glutamic acid) (PLG). Then docetaxel (DTX) and cisplatin (CDDP) were co-loaded into the PLG-g-Ve/PEG micelles via hydrophobic and chelation effect. After that, the surface of the dual-drug-loaded micelles was decorated with an αvβ3 integrin targeting peptide c(RGDfK). The targeted dual-drug-loaded micelles showed synergistic cytotoxicity and enhanced internalization rate in mouse melanoma (B16F1) cells. In vivo tests demonstrated that remarkable long circulation, anti-tumor and anti-metastasis efficacy could be achieved using this drug delivery system. This work revealed a strategy for the design and preparation of anti-cancer drug delivery systems with reduced side effect, enhanced anti-tumor and anti-metastasis efficacy.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Wantong Song, Zhaohui Tang, Dawei Zhang, Ying Zhang, Haiyang Yu, Mingqiang Li, Shixian Lv, Hai Sun, Mingxiao Deng, Xuesi Chen,