Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10228238 | Biomaterials | 2013 | 7 Pages |
Abstract
We previously developed a cell-free, biodegradable scaffold for in-situ tissue-engineering vasculature (iTEV) in a canine inferior vena cava (IVC) model. In this study, we investigated application of this scaffold for iTEV of the pulmonary artery (iTEV-PA) in a canine model. In vivo experiments were conducted to determine scaffold characteristics and long-term efficacy. Biodegradable scaffolds comprised polyglycolide knitted fibers and an l-lactide and ε-caprolactone copolymer sponge, with an outer glycolide and ε-caprolactone copolymer monofilament reinforcement. Tubular scaffolds (8 mm diameter) were implanted into the left pulmonary artery of experimental animals (n = 7) and evaluated up to 12 months postoperatively. Angiography of iTEV-PA after 12 months showed a well-formed vasculature without marked stenosis, aneurysmal change or thrombosis of iTEV-PA. Histological analysis revealed a vessel-like vasculature without calcification. However, vascular smooth muscle cells were not well-developed 12 months post-implantation. Biochemical analyses showed no significant difference in hydroxyproline and elastin content compared with native PA. Our long-term results of cell-free tissue-engineering of PAs have revealed the acceptable qualities and characteristics of iTEV-PAs. The strategy of using this cell-free biodegradable scaffold to create relatively small PAs could be applicable in pediatric cardiovascular surgery requiring materials.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Goki Matsumura, Noriko Isayama, Shojiro Matsuda, Kensuke Taki, Yuki Sakamoto, Yoshito Ikada, Kenji Yamazaki,