Article ID Journal Published Year Pages File Type
10228308 Biomaterials 2013 8 Pages PDF
Abstract
In this study, we developed a device that could easily, rapidly, and completely transfer cell sheets from one material to another or transplant cell sheets onto the dorsal subcutaneous tissues of rats without leaving residual cells. Because the manipulation is as simple as pipetting, technical expertise is not required to transfer cell sheets very rapidly (the transfer time was 3.7 ± 1.6 s) using the device compared with that of a conventional method using a pipette (430 ± 180 s). After transfer by the device, C2C12 skeletal myoblast sheets showed active cell metabolism, cell viability, and very high production of vascular endothelial growth factor and stromal-derived factor-1α, indicating transfer without cell damage. Cardiac cell sheets after transfer showed spontaneous and synchronous beating, indicating intact cell-cell junctions and ion channel proteins on the cell surface. In addition, the device allowed us to transfer C2C12 cell sheets onto soft, rugged and curved surfaces such as human hands. Furthermore, cardiac cell sheets adhered rapidly and tightly onto the dorsal subcutaneous tissues of rats. This transfer/transplantation device may be a powerful tool in cell sheet-based tissue engineering and regenerative medicine.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,