Article ID Journal Published Year Pages File Type
10228320 Biomaterials 2013 7 Pages PDF
Abstract
Surface characteristics of biomaterials such as wettability, rigidity, roughness, and electrical charge affect the fate of transplanted cells such as progenitor cells or stem cells for use in regenerative medicine. Of these, the effects of surface electrical charges on cellular behaviour such as adhesion, proliferation, and differentiation are not well understood. We prepared precisely charged culture surfaces ranging from −28 mV to +21 mV, simply by surface deposition of polyion complex nanoparticles prepared by mixing a positively charged thermoresponsive homopolymer, poly(N,N-dimethylaminoethyl methacrylate), with negatively charged plasmid DNA at various charge ratios. Drastic morphological changes of adipose-derived vascular progenitor cells were generated on the positively charged surface of organized forms at +19 mV. Capillary-like networks or single aggregates of these cells were selectively created depending on cell seeding density. Our findings offer new insights that may aid develop stem cell-processing techniques for use in regenerative medicine.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,