Article ID Journal Published Year Pages File Type
10228890 Biomaterials 2013 8 Pages PDF
Abstract
We report a microfluidic array for investigating and quantitatively analyzing human neural stem cell (hNSC) self-renewal and differentiation in an in vivo-like microenvironment. NSC niche conditions, including three-dimensional (3D) extracellular matrices and low oxygen tension, were effectively reconstituted in the microfluidic array in a combinatorial manner. The array device was fabricated to be detachable, rendering it compatible with quantitative real-time polymerase chain reaction for quantifying the effects of the biomimetic conditions on hNSC self-renewal and differentiation. We show that throughput of 3D cell culture and quantitative analysis can be increased. We also show that 3D hypoxic microenvironments maintain hNSC self-renewal capacity and direct neuronal commitment during hNSC differentiation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,